• 제목/요약/키워드: Retention Time

검색결과 1,742건 처리시간 0.022초

Effects of Polyurethane as Support Material for the Methanogenic Digester of a Two-Stage Anaerobic Wastewater Digestion System

  • Woo, Kyung-Soo;Yang, Han-Chul;Lim, Wang-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권1호
    • /
    • pp.14-17
    • /
    • 2002
  • To increase the efficiency of a two-stage anaerobic wastewater digestion system, various polymers were added to the methanogenic reactor as supports. The addition of polyurethane addition (6%, w/v) to the methanogenic reactor facilitated the organic loading rate (2-day Hydraulic Retention Time), higher than that of the conventional methanogenic reactor (6-day HRT). During the operation of the polyurethane-added reactor, a significant decrease in the organic mass in the effluent (COD 5-6 kg/l) was achieved, compared to that of the conventional reactor (COD 15-20 kg/l). The methane gas production rate also improved about 3-fold in the polyurethane-added reactor. More biomass was found to accumulate in the polyurethane-liquid phase (volatile solid, 26-28kg) than in the free-liquid phase (volatile solid, 5- 7 kg/l) after 90 days of operation. A scaled-up experiment with a polyurethane-added 2.5-1 reactor confirmed the previous results, and no adverse effects such as plugging or channeling due to decreased efficiency was observed even after 4 months of operation.

Nutrient Removal Using Fermented Organic Acids Derived from the Primary Sludge in the Intermittent Aeration Activated Sludge Process

  • Weon, Seung-Yeon;Lee, Sang-Il;Lee, Chan-Won
    • Environmental Engineering Research
    • /
    • 제16권4호
    • /
    • pp.213-218
    • /
    • 2011
  • The two-stage intermittent aeration activated sludge process (IAP) and dynamic-flow intermittent aeration activated sludge process (DFP) were investigated for the nutrient removal of domestic wastewater. Three sets of IAP and one set of DFP were operated. The fermented settled sludge taken from the primary settling tank was added to two IAP and one DFP as an external electron donor, with one IAP, in which an external carbon source was not added, as a control. All the systems were operated at a sludge retention time of 20 days and a hydraulic retention time of 12 hr. A Higher denitrification rate was observed with the fermented settled sludge for the denitrification compared to the process without the addition of the organic source. The result indicates that the fermented acid from the primary domestic sludge has been proved to be an excellent electron donor for denitrification and biological phosphorus removal with IAP and DFP in treating relatively low C/N ratio(Carbon / Nitrogen ratio) wastewater. Phosphate accumulating organisms have a capability of competing with denitrifiers in the presence of volatile organic acids under anoxic conditions.

도시 하수에서의 생물학적 고도처리를 위한 MBR공정 개발 및 화학세정에 의한 미생물 활성도 영향 분석 (Development of Submerged Membrane Bioreactor for Biological Nutrient Removal on Municipal Wastewater and Analyzing the Effect of Chemical Cleaning on Microbial Activity)

  • 박종부;박승국;허형우;강호
    • 한국물환경학회지
    • /
    • 제25권1호
    • /
    • pp.120-124
    • /
    • 2009
  • This study was performed to investigate the application of submerged membrane bioreactor (MBR) system for biological nutrient removal of municipal wastewater. MBR bioreactor consists of four reactors such as anaerobic, stabilization, anoxic and submerged membrane aerobic reactors with two internal recycles. The hydraulic retention time (HRT), sludge retention time (SRT) and flux were 6.2 hr, 34.1 days and $19.6L/m^2/hr$ (LMH), respectively. As a result of operation, the removal efficiency of $COD_{Cr}$, SS, TN and TP were 94.3%, 99.9%, 69.4%, and 74.6%, respectively. There was no significant effect of microbial activity after the maintenance cleaning using 200 mg/L of NaOCl. Membrane filtration for the treatment of municipal wastewater was performed for longer than 9 months without chemical recovery cleaning.

습식 펄프몰드 생산공정의 탈수성 향상을 위한 연구 (Improvement of Drainage at Wet Pulp Mold Process)

  • 성용주;류정용;김형진;김태근;송봉근
    • 펄프종이기술
    • /
    • 제36권3호
    • /
    • pp.52-59
    • /
    • 2004
  • The greater Increase of the demand for environmental friendly materials especially for packaging industry leads to the larger interest in the reusable and recycable materials such as pulp mold. Although the pulp mold has great characteristics for packaging, some deficiency compared with other packaging material like EPS(Expandable Polystyrene) need to be overcome, for example, the relative higher cost. In this report, since the water drainage rate at the forming zone of a wet pulp mold process could have a great influence on the economical efficiency not only by increasing machine speed but also reducing the drying energy, the optimum ways for increasing drainage were investigated The mechanism of vacuum drainage In pulp mold forming was successfully evaluated by using RDA(Retention and Darinage Analyzer). Since the conditions of stock were greatly affected by the pulping time of low consistency pulper, the optimum pupling time was investigated with considerations of all stock preparation processes. The change of stock temperature and the addition of polyelectrolyte could improve the vacuum drainage rate. It was founded that the wire mesh types of mold former had a little influence on the retention because of the relatively mild vacuum drainage. However, the bigger size of dewatering hole showed better drainage rate and could reduce the plugging and con lamination of mold.

경북지역 인삼 중 유기염소계 농약의 다성분 분석 (Multi-analysis of the Organochlorine Pesticides in Ginseng at Gyeongbuk, Korea)

  • 박문기;김정호
    • 한국환경과학회지
    • /
    • 제14권2호
    • /
    • pp.193-199
    • /
    • 2005
  • To obtain the residual organochlorine pesticides in the ginseng, the methods of multi-analysis for BHC's isomer, DDT's isomer and other organochlorine pesticides by GC-ECD are surveyed. The relative retention time for $\alpha-BHC,\;\beta-BHC,\;\delta-BHC\;and\;\gamma-BHC$ is 1.000, 1.025, 1.034 and 1.056, respectively. The relative retention time for o,p-DDE, p,p-DDE, o,o-DDD, o,p-DDT, o,p-DDD, and p,p-DDT is 1.199, 1.230, 1.242, 1.286, 1.329 and 1.333, respectively. The BHC isomers, DDT's isomer and other organochlorine pesticides are separated with multianalysis condition. The qualified defection concentration for $\alpha-BHC$, Quintozene, Aldrin, Captan, $\alpha-Endosulfan$, and Dieldrin is 0.95ng/g, 0.27ng/g, 1.04ng/g, 0.63ng/g, 0.55ng/g and 0.62ng/g, respectively. The qualified defection concentration for Fenhexamid, Endrin, $\beta-Endosulfan$, o,p-DDT, Endosulfan-sulfate is 5.71ng/g, 0.61ng/g, 0.48ng/g, 0.44ng/g and 0.51ng/g, respectively. BHC, Aldrin, Dieldrin, Endrin and DDT, which were Korea Food & Drug Administration advisory pesticides, are not detected in soil environment. Also it's residual organochlorine pesticides are not polluted in the ginseng on Sangju Korea.

Bacterial Die-Off in Continuous River Water Flow System

  • Kong, Surk-Key;Toshiuki Nakajima
    • 한국환경과학회지
    • /
    • 제12권8호
    • /
    • pp.847-852
    • /
    • 2003
  • It was examined carefully that the bacterial die-off between Chlorella vulgaris and E. coli. W3110 was tested through adding TOC (total organic carbon) with the lab-scaled continuous river water flow system (CRWFS). Artificial synthetic wastewater was applied at two levels of organic carbon concentration; 1,335 mg/l in treatment type 1 and 267 mg/l in type 2. In both types, the population densities of Chlorella vulgaris were similar in a maximum 8.25 ${\times}$ 10$\^$6/ cells/ml (type 1) and 6.925 ${\times}$ 10$\^$6/ cells/ml (type 2). The maximum densities of E. coli. W3110 were 2.0 ${\times}$ 10$\^$8/ colony forming unit (CFU)/ml in type 1 and 3.9 ${\times}$ 10$\^$8/ CFU/ml in type 2. The densities increased for 11 days in type 1 and 4 days in type 2, then decreased rapidly till the 35th day, then slightly increased again. This trend was prominent in type 2. It implied that a wider range of nutrients was required in the growth of heterotrophic bacteria in type 2 than in type 1. We could not expect successful bacterial die-off if the wastewater retention time was not furnished sufficiently.

흙막이 가시설 구조물의 무선원격계측관리시스템에 관한 연구 (A study on the Remote Control System for Measuring Gradient of temporary earth retaining structure)

  • 우종열;홍성욱;김상원;서용칠;신찬호
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 2부
    • /
    • pp.49-52
    • /
    • 2011
  • This study concerned with the retention structures or inverted temporary building for displacement measurement in the underground soil after drilling a vertical tilt sensor attached to the vertical distance required to maintain a real-time measurement and management in order to install the wireless measuring devices installed in the field through remote control and management program for the safety of retaining structures temporary building be found on the internet in real time temporary building the retention is to develop a safety management system. And based on this technology to monitor the future status of the various structures possible to add a variety of sensors and Life Cycle Prediction of the structure and needs to evolve into intelligent systems and wireless networks using wireless communications infrastructure systems based on expanding domestic market penetration by developing instrumentation pioneer in overseas markets as well as the activation can also be judged.

  • PDF

현장실험을 통한 수생식물의 수질정화 효과에 관한 연구 (A Study on the Water Quality Purification Effect of Aquatic Plants in field work)

  • 이종성;김기남
    • 한국환경과학회지
    • /
    • 제14권10호
    • /
    • pp.937-944
    • /
    • 2005
  • Presently, aquatic plants are used for the water purification in inland water. This study was carried out to investigate the water purification effect of aquatic plants, Oenanthe javanica and Typha angustata, The experiment was conducted in outdoor flowing water was conducted for ten days, Water quality was measured in terms of water temperature, COD(chemical oxygen demand), SS(suspended solids), Total N, Total P. The results of field experimentation showed that hydraulic retention time was the earliest in July and August 2003, and there were not any particular changes of monthly water temperature in inflow water and outflow water. As we look at the changes taken place in inflow water and outflow water throughout the whole experiment period, the change of water quality in summer was salient, especially SS removal ratio showed distinguished change as $25\%$, when the pebble filter and aquatic were attached to it. The removal rate of COD, total N total P were $14,7\%,\;8\%\;and\;9\%$, respectively. In relating the length of water extension to the change in water quality, the water quality tended to get lower generally in proportion to hydraulic retention time.

Treatability Study on the SepticTAnk Sludges

  • Byung Soo Yang
    • 수산해양기술연구
    • /
    • 제17권1호
    • /
    • pp.41-47
    • /
    • 1981
  • The characteristics of septic tank sludges were investigated and the kinetic coefficients in the aerobic biodegradation were evaluated from bach treatability tests. Using an unbiased statistical method, the estimated values, k (substrate removal rate coefficient) =0. 0175hr-1 at 17\ulcornerC, K. (Michaelis Menten constant) = 248mg/ e, a (cell yield coefficient)=0.625, and Kd (cell decay coefficient:' =0. 00192hr-1 were obtained based on biodegradable COD(mg/ \ulcorner) and volatile suspended solids(mg/\ulcorner). The relationship between COD and BOD, COD (mg/\ulcorner) =2. 1 BOD(mg/\ulcorner) +250, also was established for the septic tank sludges. Dilution was inevitable for the grit removal because of the high viscosity of the sludges. An aerobic activated sludge process rather than anaerobic processes was recommended for the removal of soluble organics after the removal of grit and suspended solids. A multi-stage activated sludge process was adapted for this highly concentrated and not easily-degradable waste. It was estimated that a four-stage activated sludge process would require 40 hours retention time compared to 92 hours for a single-stage process, 52 hours for a double-stage process, and 46 hours for a three stage process in order to achieve an effluent quality of 84mg/ e COD( 40mg/ e BOD) with about 4, OOOmg/ \ulcorner MLSS from an influent quality of I, 500mg/ t COD(714mg/.e BOD), while multi-stages beyond four stage would not save the required retention time significantly.

  • PDF

Performance evaluation of membrane bioreactor (MBR) coupled with activated carbon on tannery wastewater treatment

  • Alighardashi, Abolghasem;Pakan, Mahyar;Jamshidi, Shervin;Shariati, Farshid Pajoum
    • Membrane and Water Treatment
    • /
    • 제8권6호
    • /
    • pp.517-528
    • /
    • 2017
  • This study evaluates the performance of membrane bioreactor (MBR) coupled with a modified walnut shell granular activated carbon (WSGAC) for tannery wastewater treatment. For this purpose, a pilot with overall volume of 80L and 12 hours hydraulic retention time (HRT) is operated in three scenarios. Here, the chemical oxidation demand (COD) of wastewater is reduced more than 98% in both C:N ratios of 13 (S1) and 6.5 (S2). This performance also remains intact when alkalinity depletes and pH reduces below 6 (S3). The ammonium removal ranges between 99% (S2) and 70% (S3). The reliability of system in different operating conditions is due to high solids retention time and larger flocs formation in MBR. The average breakthrough periods of WSGAC are determined between 15 minutes (S2) and 25 minutes (S1). In this period, the overall nitrate removal of MBR-WSGAC exceeds 95%. It is also realized that adding no chemicals for alkalinity stabilization and consequently pH reduction of MBR effluent (S3) can slightly lengthen the breakthrough from 15 to 20 minutes. Consequently, MBR can successfully remove the organic content of tannery wastewater even in adverse operational conditions and provide proper influent for WSGAC.