• Title/Summary/Keyword: Retaining structures

Search Result 259, Processing Time 0.025 seconds

Numerical analysis of deep excavation in layered and asymmetric ground conditions (흙막이 굴착 시 지층 경사의 영향에 대한 수치해석적 분석)

  • Shin, Jong-Ho;Kim, Hak-Moon;Kim, Sang-Hwan;Kim, Sang-Kil;Nam, Taek-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1260-1268
    • /
    • 2008
  • In case of deep excavation analysis, the theory of beam on elasto-plastic geo-material (elasto-plastic theory) can not consider the inclined ground layers appropriately. It is frequently assumed that the soil layers are parallel to the surface. However, the soil layers are generally inclined and even asymmetric. The common modelling of the asymmetric half section of the excavation system using the elasto-plastic theory, can lead differences from the real behaviour of ground, which has critical significance in case of deep excavation in urban area. In this study, an attempt to find appropriate modelling methods was made by carrying out a comparative study between the FEM and the elasto-plastic analyses. It is shown that in case of the upward-inclined soil profile the elasto-plastic theory may underestimate the performance of retaining structures.

  • PDF

New horizon of earth reinforcement technique - current and future -

  • Otani, Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.514-527
    • /
    • 2007
  • Earth reinforcement techniques are used worldwide and offer proven solutions to a wide range of geotechnical engineering problems. Here in this paper, recent developments of three major reinforced soil retaining wall methods in Japan were introduced in order to show how the current situation of this technique in Japan is. And the statistical data for the volume of the use was also shown, such as the total volume of the use, the scales of the structures, layout of the earth reinforcement, fill materials, and foundation conditions. Some of the case histories were also introduced with photographs and figures. And then, as one of recent research activity by the author, the study on the application of X-ray CT for the problem of earth reinforcement method combined with other method such as piling and soil improvement was introduced. In this study, a series of model test for several reinforced ground with geogrids was conducted using a newly developed test apparatus. Then, the behavior in the soil box was scanned after settlement using X-ray CT scanner. Based on these test results, the reinforcing effect by the geogrids and the soil arching effect over the pile heads was discussed precisely and those are done in 3-D with nondestructive condition. Finally, the effectiveness of the use of X-ray CT scanner in geotechnical engineering was promised.

  • PDF

Diverse Application of ECC Designed with Ground Granulated Blast Furnace Slag

  • Kim, Jeong-Su;Kim, Yun-Yong;Kim, Jin-Keun
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.11-18
    • /
    • 2007
  • In the recent design of high ductile engineered cementitious composites (ECC), optimizing both processing and mechanical properties for specific applications is critical. This study employs a method to develop useful ECC produced with slag particles (slag-ECC) in the field, which possesses different fluid properties to facilitate diverse types of processing (i.e., self-consolidating or spray processing). Control of rheological modulation was regarded as a key factor to allow the performance of the desired processing while retaining the ductile material properties. To control the rheological properties of the composite, the basic slag-ECC composition was initially obtained, determined based on micromechanics and steady-state cracking theory. The stability and consequent viscosity of the suspensions were then mediated by optimizing the dosage of the chemical and mineral admixtures. The rheological properties altered through this approach were revealed to be effective in obtaining ECC-hardened properties, represented by pseudo strain-hardening behavior in uniaxial tension, allowing the readily achievement of the desired function of the fresh ECC.

The Analysis of Damage Characteristic and Cause on Infrastructures by Typhoon (시설물별 태풍에 따른 피해특성 및 원인분석)

  • Shin, Chang-Gun;Lee, Jong-Young;Kim, Seok-Jo;Ji, Young-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1602-1610
    • /
    • 2005
  • In this study was investigated and analyzed of damage characteristics for infrastructures by typhoon that have been many occur. The objective Structures were the road and hydraulic structure. The road structure was included the cut-slopes, retaining walls and bridges. The hydraulic structure is divided with the dike, small-scale dam, reservoir and floodgate. The analysis result of the bridge damage cause is river bottom height increase and passage ability decrease. The principal damage reasons of the cut-slope structure are weakening the ground due to the localized torrential downpour and drainage defective. Also, the principal damage reasons of the small-scale dam, reservoir, dike and the floodgate are continuous collapse of dike beside the floodgate.And we divided a typhoon damage occurrence cause with artificial and natural. As the result of analysis, the many damage occurrence cause will be removed by system improvement and technical development.

  • PDF

An Optimized Methodology to Observe Internal Microstructures of Aloe vera by Cryo-Scanning Electron Microscope

  • Choi, Yoon Mi;Shin, Da Hye;Kim, Chong-Hyeak
    • Applied Microscopy
    • /
    • v.46 no.2
    • /
    • pp.76-82
    • /
    • 2016
  • Aloe vera has been used in the pharmaceutical, food and cosmetic industry for its therapeutic properties. However, there are not many current studies on the microstructure of A. vera compared to studies on the chemical constituents and health efficacy of A. vera. Therefore, we compared the morphology of an A. vera leaf using an optical microscope, a conventional scanning electron microscope (SEM) and a cryo-SEM. Especially, this study focused on observing the gel in the inner leaf of A. vera, which is challenging using standard imaging techniques. We found that cryo-SEM is most suitable method for the observation of highly hydrated biomaterials such as A. vera without removing moisture in samples. In addition, we found the optimal analytical conditions of cryo-SEM. The sublimation conditions of $-100^{\circ}C$ and 10 minutes possibly enable the surface of the inner leaf of A. vera to be observed in their "near life-like" state with retaining moisture. The experiment was repeated with A. arborescens and A. saponaria to confirm the feasibility of the conditions. The results of this study can be applied towards the basic research of aloe and further extend previous knowledge about the surface structures of the various succulent plants.

Application of DEW Anchor with Field Test (현장시험을 통한 DEW 지압형 앵커의 적용성평가)

  • Choe, Gyeong-Jip;Park, U-Yeong;Yu, Seong-Jin;Lee, Seong-Rak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.745-751
    • /
    • 2009
  • The anchor is used extensively for a cutting slope, an earth retaining wall, an uplift resistance of sub-structures and so on at civil engineering projects and is classified by aim in use, tendon material, and ground/tension fixing type. It can be distinguished extensively into friction type, bearing type, and complex type by ground fixing type. Generally, bond length of friction type anchor has application to 3~10m depending on the friction-resistance characteristics. In this study, 'DEW(double enlargement wedge) bearing type anchor' of new concept is devised. The bond length is about 0.6~0.8m. It can be used on the ground to have the strength characteristics above it of weathered rock. There are merits which are 'period reduction' and 'cost saving' through the minimum of the boring length. In addition, it is so called environmentally friendly Methods because it can reduce the quantity of carbon dioxide through the reducing drilling machine operation time.

  • PDF

Electrochemical Behavior of Poly 8-(3-Acetylimino-6-methyl 2,4-dioxopyran)-1-aminonaphthaline in Aqueous and Non Aqueous Media

  • Hathoot, A.A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1609-1612
    • /
    • 2003
  • The electrooxidation of 8-(3-acetylimino-6-methyl 2,4-dioxopyran)-1-aminonaphthaline (AMDAN) in aqueous and non aqueous media led to the formation of polymeric films, poly (AMDAN). The monomer, undergo anodic oxidation through the formation of a monocation radical irrespective of the nature of the medium. In aqueous medium, the monocation radical undergoes, through its resonance structures, dimerisation involving tail-to-tail, head-to-tail and even head-to-head coupling. The products formed, being more easily oxidisable than the parent substance, undergo further oxidation at the same potential so that the overall oxidation involves a one-step (i.e., a single wave), two-electron process. In non-aqueous medium, the monocation radical does not undergo dimerisation through coupling reactions. Retaining its identity, monomer oxidise in two steps involving one electron in each step. The fact that the cathodic peaks corresponding to these anodic peaks are rarely observed indicates fast consumption of the electrogenerated monocation radicals and dications by follow-up chemical reactions to produce polymeric products (poly AMDAN). The electrochemical behavior of the formed polymer films was investigated in both non aqueous and aqueous media. The films prepared in non aqueous medium were found to be more electroactive than that the films prepared in aqueous medium. This is confirmed with the results in litreature which illustrate that the film prepared in aqueous solution hold water in its structure via hydrogen bonding, which causes decomposition reactions.

Effects of a Lift Height on the Thermal Cracking in Wall Structures

  • Kim, Sang-Chel
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.47-56
    • /
    • 2000
  • Once a structure fabricated with mass concrete is in a form of wall such as retaining wall, side walls of a concrete caisson and so on, cracks induced by hydration heat have been known to be governed by exterior restraints which are mainly related to the boundary conditions of the structure. However, it is thought that the degree of restraints can be alleviated considerably only if a lift height of concrete placement or a panel size of the wall is selected properly before construction. As a way of minimizing thermal cracking commonly observed in massive wall-typed structure, this study aimed at evaluating effects of geometrical configuration on the temperature rise and thermal stress through parametric study. Evaluation of the effect was also performed for cement types using anti-sulphate cement, blast furnace slag cement and cement blended with two mineral admixture and one ordinary Portland Cement. so called ternary blended cement. As a result of analytical study, it was found that a lift height of concrete placement is the most important factor in controlling thermal cracking in massive wall, and the increase of a lift height is not always positive to the crack occurrence as not expected.

  • PDF

Differentiation of the Fetal Rat Pulmonary Epithelial Cells in Organotypic Culture (기관형 배양에서 흰쥐 태자 폐상피세포의 분화)

  • 홍혜남;조운복
    • The Korean Journal of Zoology
    • /
    • v.35 no.3
    • /
    • pp.295-307
    • /
    • 1992
  • In order to study the differentiation of the epithelial cells during the development of fetal rat lung tissue, histological changeB in organotypic culture and in vivo were examined. Light microscopy and scanning electron microscopy were used to analvre the histological change in rat lung from the 15th nary of gestation to the 111th nary after birth. In organotypic culture system, the pulmonary epithelial cell differentiation was studied by scanning electron microscopy. The results obtained from this study were as follows. 1. During deveiopment of lung, the glandular stage lasted from the Isth day to the lsth naut of gestation; the canalicular stage from the 17th nay to the 19th naut of gestation; the saccuiar stage from 20th nary to the birth. Alveolar stage was observed at the 3rd nary of postnatal rat lung. 2. In organotvpic culture of fetal rat lung cells organized alveolar-like structures resembling those of in uiuo state were observed on the gelatin matrix. In contrast with in vivo state, fetal lung cells formed group of type ll pneumocytes predominently along the contours of the matrix. These cells have large apical surface, short microvilli and secreted materials which may be sunactant. These results suggested that an orsanotypic culture retaining epithelial- -mesenchvmal relationships is appropriate culture model to study the pulmonary epithelial cell (especially type ll pneumocvte) differentation.

  • PDF

Effect of ground granulated blast furnace slag on time-dependent tensile strength of concrete

  • Shariq, M.;Prasad, J.
    • Computers and Concrete
    • /
    • v.23 no.2
    • /
    • pp.133-143
    • /
    • 2019
  • The paper presents the experimental investigations into the effect of ground granulated blast furnace slag (GGBFS) on the time-dependent tensile strength of concrete. The splitting and flexural tensile strength of concrete was determined at the ages of 3, 7, 28, 56, 90, 150 and 180 days using the cylindrical and prism specimens respectively for plain and GGBFS concrete. The amount of cement replacement by GGBFS was 0%, 40% and 60% on the weight basis. The maximum curing age was kept as 28 days. The results showed that the splitting and flexural tensile strength of concrete containing GGBFS has been found lower than the plain concrete at all ages and for all mixes. The tensile strength of 40 percent replacement has been found higher than the 60 percent at all ages and for all mixes. The rate of gain of splitting and flexural tensile strength of 40 percent GGBFS concrete is found higher than the plain concrete and 60 percent GGBFS concrete at the ages varying from 28 to 180 days. The experimental results of time-dependent tensile strength of concrete are compared with the available models. New models for the prediction of time-dependent splitting and flexural tensile strength of concrete containing GGBFS are proposed. The present experimental and analytical study will be helpful for the designers to know the time-dependent tensile properties of GGBFS concrete to meet the design requirements of liquid retaining reinforced and pre-stressed concrete structures.