• Title/Summary/Keyword: Restriction sites

Search Result 183, Processing Time 0.023 seconds

Polymorphisms in Exon 2 of MHC Class II DRB3 Gene of 10 Domestic Goats in Southwest China

  • Zhao, Yongju;Xu, Huizhong;Shi, Lixiang;Zhang, Jiahua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.6
    • /
    • pp.752-756
    • /
    • 2011
  • Polymorphism of the second exon of the caprine leukocyte antigen-DRB3 gene (CLA-$DRB3^*02$) was investigated in this study. The 285 bp PCR product of 258 individuals from 10 domestic goat breeds in Southwest China was digested with restriction endonucleases PstI and HaeIII and then genotyped. Three alleles and 4 restriction digestion profiles were distinguished by digestion of the PCR fragment by PstI, and 8 alleles and 13 genotypes by HaeIII. For HaeIII restriction enzyme sites, the Chi-square ($X^2$) test showed that all goat breeds in this study did not fit with the Hardy-Weinberg equilibrium (p<0.01 or p<0.05). The highly polymorphic nature of CLA-$DRB3^*02$ was demonstrated and the ranges of gene heterozygosity (He) and polymorphism information content (PIC) were 0.36-0.63 and 0.32-0.55, respectively. Clustering analysis showed that the 10 goat breeds clustered into two groups and Dazu Black goat had a close genetic relationship with Chengdu Grey, Jintang Black and Nanjiang Yellow goats.

Molecular cloning and restriction endonuclease mapping of homoserine dehydrogenase gene (HOM6) in yeast saccharomyces cerevisiae (Aspartate계 아미노산 대사 효모 유전자 HOM6의 cloning 및 구조분석)

  • 김응기;이호주
    • Korean Journal of Microbiology
    • /
    • v.24 no.4
    • /
    • pp.357-363
    • /
    • 1986
  • Synthesis of threonine and methionine in yeast, Saccharomyces cerevisiae shares a common pathway from aspartate via homoserine. HOM6 gene encodes homoserine dehydrogenase (HSDH) which catalyzes the inter-conversion of beta-aspartate semialdehyde and homoserine. The level of HSDH is under methionine specific control. A recombinant plasmid (pEK1: 13.3kb), containing HOM6 gene, has been isolated and cloned into E. coli by complenemtary transformation of a homoserine auxotrophic yeast strain M-20-20D (hom6, trp1, ura3) to a prototrophic M20-20D/pEK1, using a library of yeast genomic DNA fragments in a yeast centromeric plasmid, YCp50(8.0kb). Isolation of HOM6has been primarily confirmed by retransformation of the original yeast strain M20-20D, using the recombinant plasmid DNA which was extracted from M20-20D/pEK1 and subsequently amplified in E. coli. Eleven cleavage sites in the insery (5.3kb) have been localized through fragment analysis for 8 restriction endonucleases; Bgl II(2 site), Bgl II(1), Cla I(3), Eco RI(1), Hind III(2), Kpn I (1), Pvu II(1) and Xho I(1).

  • PDF

Multi-Homologous Recombination-Based Gene Manipulation in the Rice Pathogen Fusarium fujikuroi

  • Hwang, In Sun;Ahn, Il-Pyung
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.173-181
    • /
    • 2016
  • Gene disruption by homologous recombination is widely used to investigate and analyze the function of genes in Fusarium fujikuroi, a fungus that causes bakanae disease and root rot symptoms in rice. To generate gene deletion constructs, the use of conventional cloning methods, which rely on restriction enzymes and ligases, has had limited success due to a lack of unique restriction enzyme sites. Although strategies that avoid the use of restriction enzymes have been employed to overcome this issue, these methods require complicated PCR steps or are frequently inefficient. Here, we introduce a cloning system that utilizes multi-fragment assembly by In-Fusion to generate a gene disruption construct. This method utilizes DNA fragment fusion and requires only one PCR step and one reaction for construction. Using this strategy, a gene disruption construct for Fusarium cyclin C1 (FCC1), which is associated with fumonisin B1 bio-synthesis, was successfully created and used for fungal transformation. In vivo and in vitro experiments using confirmed fcc1 mutants suggest that fumonisin production is closely related to disease symptoms exhibited by F. fujikuroi strain B14. Taken together, this multi-fragment assembly method represents a simpler and a more convenient process for targeted gene disruption in fungi.

Construction of recombinant DNA clone for bovine viral diarrhea virus (소 바이러스성 설사병 바이러스의 유전자 재조합 DNA clone의 작성에 관한 연구)

  • Yeo, Sang-geon;Cho, H.J.;Masri, S.A.
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.3
    • /
    • pp.389-398
    • /
    • 1992
  • Molecular cloning was carried out on the Danish strain of bovine viral diarrhea virus(BVDV) to construct strategy for the diagnostic tools and effective vaccine of BVD afterwards. A recombinant DNA clone(No. 29) was established successfully from cDNA for viral RNA tailed with adenine homopolymer at 3'-end. $^{32}P$-labeled DNA probes of 300~1,800bp fragments, originating from the clone 29, directed specific DNA-RNA hybridization results with BVDV RNA. Recombinant DNA of the clone 29 was about 5,200bp representing 41.6% of the full length of Danish strain's RNA, and restriction sites were recognized for EcoR I, Sst I, Hin d III and Pst I restriction enzymes in the DNA fragment.

  • PDF

Molecular Cloning And analysis of Korean Insulin Gene (한국인 인슈린 유전자의 클로닝 및 분석)

  • 김형민;한상수;고건일;손동환;전창덕;정헌택;김재백
    • YAKHAK HOEJI
    • /
    • v.37 no.5
    • /
    • pp.504-510
    • /
    • 1993
  • Human insulin gene is consisted of the polymorphic region with the repeating units, the regulatory sequence, the structural gene including the intervening sequence, and 3'-flanking region. The polymerase chain reaction, which amplifies the target DNA between two specific primers, has been performed for the amplification of human insulin gene and simple one-step cloning of it into Escherichia coli. Out of 1727 nuceotides compared, only 4 sites were variable: 5'-regulatory region(G2101$\rightarrow$AGG); IVS I(T2401$\rightarrow$A); Exon II(C2411 deletion); IVS II(A2740 dejection). The variations at the G2101 and T2401 were the same as those found in one American allele. The other two variations were observed only in the specific Korean allele. And, the enzyme digestion patterns among normal, insulin dependent diabetes mellitus, and non-insulin dependent diabetes mellitus were the same. On the other hand, PCR method showed the possibility of the quickaccess for the polymorphic region in terms of the restriction fragment length of polymorphism.

  • PDF

Nucleotide Sequence of $\alpha$-Amylase Gene in the Yeasr Schwanniomyces accidentalis var. persoonii CBS 2169 (Schwanniomyces occidentalis var. persoonii CBS 2169 $\alpha$-Amylase 유전자의 Nucleotide Sequence)

  • Park, Jong-Chun;Bai, Suk;Oh, Sang-Jin;Lee, Jin-Jong;Chun, Soon-Bai
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.6
    • /
    • pp.534-541
    • /
    • 1993
  • The relationship between Schwanniomyces occidentalis CBS 2863 (formerly castellii) and CBS 1153 (formerly alluvius), and their variety persoonii was examined at alpha-amylase gene level. Using Sch. occidentalis alpha-amylase gene as probe, Sch. occidentalis alpha-amylase gene homologues were obtained from Sch. occidentalis CBS 1153 and Sch. occidentalis var. persoonii. The restriction analysis of these homologues showed that the restriction enzyme sites between Sch. occidentalis CBS 2863 and CBS 1153 was identical but different between these strains and Sch. occidentalis var. persoonii.

  • PDF

A new serotype confirmed by partial physical mapping of cDNA clones from the infectious pancreatic necrosis virus (IPNV) isolated in Korea (한국에서 분리된 전염성 췌장괴저 바이러스의 새로운 혈청형에 대한 유전자 분석)

  • 이정진;박정우;정가진
    • Korean Journal of Microbiology
    • /
    • v.27 no.3
    • /
    • pp.231-236
    • /
    • 1989
  • The larger segment of double stranded RNA genome from a new serotype of Infectious Pancreatic Necrosis Virus (IPNV), DRT, has been partially cloned at Sma I site in pUC19 and compared with the restriction maps of VR-299 and Sp. Restrction sites found in DRT was distinct and hence a new serotype. The cDNA clones of DRT were about 800, 850, and 1, 400 bp long each and do not share any common restiction site. It is not clear yet if there exist any overlapping sequences among them. This partial cloning, however, was sufficient for the comparison of restriction maps with the other serotypes.

  • PDF

Molecular cloning and restriction analysis of aspartokinase gene (HOM3) in the yeast, saccharomyces cerevisiae (아스파테이트족 아미노산 대사에 관여하는 효모유전자(HOM3)의 클로닝 및 구조분석)

  • 최승일;이호주
    • Korean Journal of Microbiology
    • /
    • v.26 no.1
    • /
    • pp.32-36
    • /
    • 1988
  • The yeast gene HOM3 encodes aspartokinase, which catalyses the first step (aspartate to and from beta-aspartyl phosphate) of common pathway to threonine and methionine. The yeast HOM3 gene expression is known to be regulated by threonine and methionine specific control, and also by general control of amino acid biosynthesis. Isolation and characterization of the HOM3 gene are essential for the molecular genetic study on its regulation of expression. A recombinant plasmid pSC3 (15.5kb, vector YCp50) has been cloned into E. coli HB101 from yeast genomic library through their complementing activity of HOM3 mutation in a yeast recipient strain M34-24B. Organization of the plasmid was characterized by delineation of restriction cleavage sites in the insert fragment.

  • PDF

Improvement of Transformation Efficiency by Strategic Circumvention of Restriction Barriers in Streptomyces griseus

  • Suzuki, Hirokazu;Takahashi, Shunji;Osada, Hiroyuki;Yoshida, Ken-Ichi
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.7
    • /
    • pp.675-678
    • /
    • 2011
  • DNA methylation in Streptomyces griseus IFO 13350 was analyzed by high-performance liquid chromatographic analysis and bisulfite-based analysis to reveal two methylation sites, 5'-$GC^{5m}$ CGGC-3' and 5'-$GAG^{5m}$ CTC-3'. The methylation was reconstituted in Escherichia coli by simultaneous expression of S. griseus SGR4675 and S. achromogenes M.SacI. The E. coli cells produced plasmids that mimicked the methylation profile of S. griseus DNA, which was readily introduced into S. griseus. The results of this study raise the possibility of a promising approach to establish efficient transformation in several streptomycetes.

Access Restriction by Packet Capturing during the Internet based Class (인터넷을 이용한 수업에서 패킷캡쳐를 통한 사이트 접속 제한)

  • Yi, Jungcheol;Lee, Yong-Jin
    • 대한공업교육학회지
    • /
    • v.32 no.1
    • /
    • pp.134-152
    • /
    • 2007
  • This study deals with the development of computer program which can restrict students to access to the unallowable web sites during the Internet based class. Our suggested program can find the student's access list to the unallowable sites, display it on the teacher's computer screen. Through the limitation of the student's access, teacher can enhance the efficiency of class and fulfill his educational purpose for the class. The use of our results leads to the effective and safe utilization of the Internet as the teaching tools in the class. Meanwhile, the typical method is to turn off the LAN (Local Area Network) power in order to limit the student's access to the unallowable web sites. Our program has been developed on the Linux operating systems in the small network environment. The program includes following five functions: the translation function to change the domain name into the IP(Internet Protocol) address, the search function to find the active students' computers, the packet snoop to capture the ongoing packets and investigate their contents, the comparison function to compare the captured packet contents with the predefined access restriction IP address list, and the restriction function to limit the network access when the destination IP address is equal to the IP address in the access restriction list. Our program can capture all passing packets through the computer laboratory in real time and exactly. In addition, it provides teacher's computer screen with the all relation information of students' access to the unallowable sites. Thus, teacher can limit the student's unallowable access immediately. The proposed program can be applied to the small network of the elementary, junior and senior high school. Our research results make a contribution toward the effective class management and the efficient computer laboratory management. The related researches provides teacher with the packet observation and the access limitation for only one host, but our suggested program provides teacher with those for all active hosts.