• Title/Summary/Keyword: Restraint Length

Search Result 48, Processing Time 0.021 seconds

A Study of Longitudinal Forces and Displacements in a Multi-Span Bridge Equipped with a CWR Track (장대레일이 설치된 교량에서의 축방향 변위 및 축력 변화 연구)

  • Lee, Joo-Heon;Huh, Young
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.442-449
    • /
    • 1999
  • Due to temperature variations, considerable longitudinal rail forces and displacements may develop in continuous welded rail(CWR) track on long-span bridges or viaducts. Excessive relative displacements between sleepers and ballast bed may disturb the stable position of the track in the ballast which results in a lower frictional resistance. Generally, these problems are solved by installing rail expansion devices. However the application of expansion devices in high-speed tracks on existing bridges, as a means to prevent excessive longitudinal displacements and forces, is not attractive method due to comfort, safety and maintenance aspects. An alternative and very effective solution is possibly the use of so-called zero longitudinal restraint(ZLR) fastenings over some length of the track. The calculations, carried out in this respect, show a considerable reduction of track displacements, track forces, and the relative sleeper/ballast displacements. This reduction depends on the length over which these fastenings are installed. In this paper calculations of the longitudinal displacments and forces in a CWR track and substructure resulting from thermal, mechanical and kinematical loads were carried out using the FEM analysis program LUSAS

  • PDF

Stability of Moment Resisting Steel Frames with Weak Beams (보항복형 강구조골조의 안정성에 관한 연구)

  • Shin, Yong Woo;Kim, Hee Dong;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.253-261
    • /
    • 1998
  • The buckling length of exterior beam-columns of the first floor in moment resisting steel frames with weak beams is uncertain when plastic hinges occur at the ends of weak beams due to seismic loads. The objective of this study is to investigate the buckling strength of concrete-filled tubular beam-columns and to suggest the reduced buckling length of them to apply to the beam-column design code. The exterior beam-columns are modelized with horizontal displacement restraint springs. Their strength and reduced buckling length are evaluated by numerical analysis.

  • PDF

A Study on the Adjustment of Eaves Curve and Roof Length of Three-Bay-Kan Buddhist Temples with the Hipped and Gable Roof (정면 3칸 팔작지붕 불전의 처마 곡선과 지붕 길이 조절에 관한 연구)

  • Wi, So-Yeon;Sung, Dae-Chul;Shin, Woong-Ju
    • Journal of architectural history
    • /
    • v.26 no.3
    • /
    • pp.39-49
    • /
    • 2017
  • It is difficult to build a hipped and gable roof in slender rectangular type due to restraint in variation of lateral length caused by gongpo arranged on the side, purlin space and the form of gable part and aesthetical effect of chunyeo maru. Against this backdrop and with the assumption that this phenomenon is more apparent in roofs of three-bay-kan Buddhist temples with the hipped and gable roof among national treasure Buddhist temples, this study has aimed to prove that a roof can be built in a less slender rectangular type than that of flat form and to present the building methodology and found the following findings. First, The ratio of lateral to longitudinal length of the roof has been adjusted by protruding the chunyeo and the method of adjusting the ratio of lateral to longitudinal length of the roof is considered to be determined depending on the availability of woods to be used in chunyeo. Second, in order to symmetrically arrange the edge of the roof, which is critical from the perspective of construction morphology, the chunyeo angle has been intentionally adjusted to reduce the gap of length between the front roof and the lateral roof. To sum up, the characteristic of the hipped and gable roof, which is difficult to be built in slender rectangular type, is more clearly shown in the roof and it is identified that the length of the front roof and the lateral roof has been intentionally adjusted to achieve the symmetrical arrangement of roofline of the roof edge.

Turbulent natural convective heat transfer charateristics in a square enclosure with control plates attached at the horifontal partition (제어판이 부착된 수평격판에 의해 분리되는 밀폐공간내의 난류 자연대류 열전달 특성)

  • 김점수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.2
    • /
    • pp.150-160
    • /
    • 2000
  • Turbulent natural convective flow and heat transfer in a square enclosure with horizontal partition are investigated numerically. The enclosure is composed of a lower hot and a upper cold horizontal walls and adiabatic vertical walls. Partitions carried with the upward, downward, and both control plates are attached perpendicularly to the one of the vertical insulated walls, respectively. The low Reynolds number $k-\varepsilon$ model is adopted to calculate the turbulent thermal convection. The governing equations are solved by using the finite element method with Galerkin method. The computations have been carried out by varying the length of partition, the position of control plates, and the Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height for water(Pr=4.95). When the control plates are attached at the edge of partition, the stability of oscillating flow grows wrose with the increase of Rayleigh number and the partition length. The heat transfer rate has been reducer than that of no control plate due to the restraint of control plates with the increase of Rayleigh number.

  • PDF

Nurse Staffing and Health Outcomes of Psychiatric Inpatients: A Secondary Analysis of National Health Insurance Claims Data

  • Park, Suin;Park, Sohee;Lee, Young Joo;Park, Choon-Seon;Jung, Young-Chul;Kim, Sunah
    • Journal of Korean Academy of Nursing
    • /
    • v.50 no.3
    • /
    • pp.333-348
    • /
    • 2020
  • Purpose: The present study investigated the association between nurse staffing and health outcomes among psychiatric inpatients in Korea by assessing National Health Insurance claims data. Methods: The dataset included 70,136 patients aged 19 years who were inpatients in psychiatric wards for at least two days in 2016 and treated for mental and behavioral disorders due to use of alcohol; schizophrenia, schizotypal and delusional disorders; and mood disorders across 453 hospitals. Nurse staffing levels were measured in three ways: registered nurse-to-inpatient ratio, registered nurse-to-adjusted inpatient ratio, and nursing staff-to-adjusted inpatient ratio. Patient outcomes included length of stay, readmission within 30 days, psychiatric emergency treatment, use of injected psycholeptics for chemical restraint, and hypnotics use. Relationships between nurse staffing levels and patient outcomes were analyzed considering both patient and system characteristics using multilevel modeling. Results: Multilevel analyses revealed that more inpatients per registered nurse, adjusted inpatients per registered nurse, and adjusted inpatients per nursing staff were associated with longer lengths of stay as well as a higher risk of readmission. More adjusted inpatients per registered nurse and adjusted inpatients per nursing staff were also associated with increased hypnotics use but a lower risk of psychiatric emergency treatment. Nurse staffing levels were not significantly associated with the use of injected psycholeptics for chemical restraint. Conclusion: Lower nurse staffing levels are associated with negative health outcomes of psychiatric inpatients. Policies for improving nurse staffing toward an optimal level should be enacted to facilitate better outcomes for psychiatric inpatients in Korea.

Design Equation Suggestion through Parametric Study of Laterally Restrained Concrete Decks with Steel Strap (Steel Strap으로 횡보강된 콘크리트 바닥판의 매개변수해석을 통한 설계식 제안)

  • Kim, Cheol-Hwan;Yi, Seong-Tae;Jo, Byung-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.49-57
    • /
    • 2014
  • A deterioration of typical reinforced concrete (RC) bridge deck is due to the use of calcium chloride, cracks and water penetration inside of the deck slab with steel reinforcement. In order to eliminate the defects of RC decks in terms of material, therefore, the steel-strapped deck system is studied and developed by maximizing the arching effect while the girders are restrained using straps in lateral direction to the bridge. This parametric study was performed to analyze the structural characteristics of steel-strapped deck, and to identify the factors of the thickness, span length and lateral restraint stiffness of deck slab considering the concrete non-linearity. Finally, a design equation, which is adequate to South Korea, is suggested.

Path Analysis for Delirium on Patient Prognosis in Intensive Care Units (섬망이 중환자실 환자결과에 미치는 영향: 경로 분석)

  • Lee, Sunhee;Lee, Sun-Mi
    • Journal of Korean Academy of Nursing
    • /
    • v.49 no.6
    • /
    • pp.724-735
    • /
    • 2019
  • Purpose: This study was conducted to investigate relationship between delirium, risk factors on delirium, and patient prognosis based on Donabedian's structure-process-outcome model. Methods: This study utilized a path analysis design. We extracted data from the electronic medical records containing delirium screening data. Each five hundred data in a delirium and a non-delirium group were randomly selected from electronic medical records of medical and surgical intensive care patients. Data were analyzed using SPSS 20 and AMOS 24. Results: In the final model, admission via emergency department (Β=.06, p=.019), age over 65 years (Β=.11, p=.001), unconsciousness (Β=.18, p=.001), dependent activities (Β=.12, p=.001), abnormal vital signs (Β=.12, p=.001), pressure ulcer risk (Β=.12, p=.001), enteral nutrition (Β=.12, p=.001), and use of restraint (Β=.30, p=.001) directly affecting delirium accounted for 56.0% of delirium cases. Delirium had a direct effect on hospital mortality (Β=.06, p=.038), hospital length of stay (Β=5.06, p=.010), and discharge to another facility (not home) (Β=.12, p=.001), also risk factors on delirium indirectly affected patient prognosis through delirium. Conclusion: The use of interventions to reduce delirium may improve patient prognosis. To improve the dependency activities and risk of pressure ulcers that directly affect delirium, early ambulation is encouraged, and treatment and nursing interventions to remove the ventilator and drainage tube quickly must be provided to minimize the application of restraint. Further, delirium can be prevented and patient prognosis improved through continuous intervention to stimulate cognitive awareness and monitoring of the onset of delirium. This study also discussed the effects of delirium intervention on the prognosis of patients with delirium and future research in this area.

An Analytical Method for the Evaluation of Micro-cracking in Concrete Shrinkage Induced (콘크리트의 수축으로 인한 미세균열 발생 평가를 위한 해석적 기법)

  • Song, Young-Chul;Kim, Do-Gyeum;Moon, Jae-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.69-76
    • /
    • 2010
  • The majority of research that has been performed on cracking potential of concrete by shrinkage has assumed that concrete acts as a homogeneous material. However, with this approach, it is not able to evaluate the micro-cracking behavior in concrete due to autogenous shrinkage under unrestrained boundary condition (free boundary condition) nor to understand the cracking behavior properly because of the heterogeneous nature of concrete. To better understand the micro-cracking behavior of concrete induced by autogenous shrinkage, series of experiments were performed measuring the length change and acoustic emission energy. As an analytical approach, this research uses an object oriented finite element analysis code (OOF code) to simulate the behavior of the concrete on a meso-scale. The concrete images used in the simulations were directly obtained from mortar samples. From the experiments and simulation results, it was able to better understand the micro-cracking behaviour of concrete due to shrinking of paste phase and internal restraint by aggregates.

Seismic control of high-speed railway bridge using S-shaped steel damping friction bearing

  • Guo, Wei;Wang, Yang;Zhai, Zhipeng;Du, Qiaodan
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.479-500
    • /
    • 2022
  • In this study, a new type of isolation bearing is proposed by combining S-shaped steel plate dampers (SSDs) with a spherical steel bearing, and the seismic control effect of a five-span standard high-speed railway bridge is investigated. The advantages of the proposed S-shaped steel damping friction bearing (SSDFB) are that it cannot only lengthen the structural periods, dissipate the seismic energy, but also prevent bridge unseating due to the restraint effectiveness of SSDs in the large relative displacements between the girders and piers. This study first presents a detailed description and working principle of the SSDFB. Then, mechanical modeling of the SSDFB was derived to fundamentally define its cyclic behavior and obtain key mechanical parameters. The numerical model of the SSDFB's critical component SSD was verified by comparing it with the experimental results. After that, parameter studies of the dimensions and number of SSDs, the friction coefficient, and the gap length of the SSDFBs were conducted. Finally, the longitudinal seismic responses of the bridge with SSDFBs were compared with the bridge with spherical bearing and spherical bearing with strengthened shear keys. The results showed that the SSDFB can not only significantly mitigate the shear force responses and residual displacement in bridge substructures but also can effectively reduce girder displacement and prevent bridge unseating, at a cost of inelastic deformation of the SSDs, which is easy to replace. In conclusion, the SSDFB is expected to be a cost-effective option with both multi-stage energy dissipation and restraint capacity, making it particularly suitable for seismic isolation application to high-speed railway bridges.

A study on the crack characteristics of the Synthetic Fiber reinforced Soil (섬유 보강토의 균열 특성 연구)

  • 송창섭;이신호;반창현;인현식
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.431-437
    • /
    • 1998
  • This study was performed to ascertain the three-dimensional effect of the crack reduction and the restrained effect of crack growth, and to yield a suitable mixing ratio of the synthetic fiber reinforced soil. The results of the study are as follows ; 1) The synthetic fiber has the resisting force for crack because of the adhesion due to the attraction of soil particles. 2) As the synthetic fiber length and the mixing ratio are increased, mono filament synthetic fiber reinforced soil is increased the effects of crack reduction and the restraint of crack growth. 3) The fibrillated synthetic fiber is more effective than mono filament synthetic fiber for crack. 4) A suitable mixing ratio of synthetic fiber reinforced soil is 0.5% of the fibrillated synthetic fiber.

  • PDF