• Title/Summary/Keyword: Restoration model

Search Result 821, Processing Time 0.029 seconds

Strategies for Managing Dementia Patients through Improving Oral Health and Occlusal Rehabilitation: A Review and Meta-analysis

  • Yeon-Hee Lee;Sung-Woo Lee;Hak Young Rhee;Min Kyu Sim;Su-Jin Jeong;Chang Won Won
    • Journal of Korean Dental Science
    • /
    • v.16 no.2
    • /
    • pp.128-148
    • /
    • 2023
  • Dementia is an umbrella term that describes the loss of thinking, memory, attention, logical reasoning, and other mental abilities to the extent that it interferes with the activities of daily living. More than 50 million individuals worldwide live with dementia, which is expected to increase to 131 million by 2050. Recent research has shown that poor oral health increases the risk of dementia, while oral health declines with cognitive decline. In this narrative review, the literature was based on the "hypothesis" that dementia and oral health have a close relationship, and appropriate oral health and occlusal rehabilitation treatment can improve the quality of life of patients with dementia and prevent progression. We conducted a literature search in PubMed and Google Scholar databases, using the search terms "dementia," "major neurocognitive disorder," "dentition," "occlusion," "tooth loss," "dental prosthesis," "dental implant," and "occlusal rehabilitation" in the title field over the past 30 years. A total of 131 studies that scientifically addressed dementia, oral health, and/or oral rehabilitation were included. In a meta-analysis, the random effect model demonstrated significant tooth loss increasing the dementia risk 3.64-fold (pooled odds ratio=3.64, 95% confidence interval [2.50~5.32], P-value=0.0348). Tooth loss can be an important indicator of cognitive function decline. As the number of missing teeth increases, the risk of dementia increases. Loss of teeth can lead to a decrease in the ascending information to the brain and reduced masticatory ability, cerebral blood flow, and psychological atrophy. Oral microbiome dysbiosis and migration of key bacterial species to the brain can also cause dementia. Additionally, inflammation in the oral cavity affects the inflammatory response of the brain and the complete body. Conversely, proper oral hygiene management, the placement of dental implants or prostheses to replace lost teeth, and the restoration of masticatory function can inhibit symptom progression in patients with dementia. Therefore, improving oral health can prevent dementia progression and improve the quality of life of patients.

Investigation for Bed Stabilization Methods in the Upstream Channel of Haman Weir Using CCHE2D Model (CCHE2D 모형을 이용한 함안보 상류 하상안정화 방안 검토)

  • Jang, Eun Kyung;Ji, Un;Kwon, Yong Sung;Yeo, Woon Kwang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2211-2221
    • /
    • 2013
  • During the four river restoration project, several weirs were constructed in the four rivers to prevent drought and flood, to improve water quality, and to manage water resources. However, due to the weir construction, bed changes are produced in the upstream channel of installed weirs because the incoming flow velocity is reduced and sediment transport capacity is also lowered. Especially, since the Haman Weir is located in the lowest downstream section among newly installed weirs in Nakdong River, bed change and sedimentation problems are expected due to the mild slope and reduced velocity. Therefore, numerical simulation was performed to analyze flow and bed changes in the upstream channel of Haman Weir and to evaluate quantitatively sediment control methods for bed stabilization using CCHE2D model. As a result of flow and bed change simulation after installation of Haman Weir, the flow velocity at the initial condition was faster than the final bed condition with the specific simulation time and it was represented that the locations where bed changes were great were identical for all modeling conditions of flow discharge. In case of 4.5 m of water level lowered from 5.0 m of the management water level at Haman Weir for bed stabilization, the flow velocity was generally faster than the case of the management water level and the continuous erosion was developed at the most narrow channel section as the applied discharge and simulation period were increased. The channel width extension at the most narrow channel section was proposed in this study to prevent and stabilize continuos bed erosion. As a result of numerical analysis, there was no bed erosion after channel width extension and it was presented that the channel geometry extension was effective for bed stabilization at Haman Weir.

Biological Water Quality Assessments Using Fish Assemblage in Nakdong River Watershed (어류를 이용한 낙동강 수계의 생물학적 수질 평가)

  • Choi, Ji-Woong;Lee, Eui-Haeng;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.254-263
    • /
    • 2007
  • The objective of this study was to evaluate biological water quality using fish assemblages in Nakdong River watershed. We selected 6 sites along the main axis of the river and evaluated the Index of Biological Integrity (IBI), Qualitative Habitat Evaluation Index (QHEI) and chemical water quality during July 2004${\sim}$March 2006. For the study, we applied the 10 metric IBI model, which was developed for national biological water quality criteria. Nakdong River's IBI value averaged 20.8 (n=14) during the study which means poor biological water quality. Physical habitat health at all sites, based on QHEI model, was measured as 110, indicating fair${\sim}$good condition. The habitat health varied depending on the locations sampled. Habitat health in sites 1 and 6 was judged as good, while the health in sites 3 and 4 was $poor{\sim}fair$. Especially, we found the metric values of $M1{\sim}M5$, M7, M10 were low in sites 3 and 4 compared to other sites. In these sites, thus, habitat restoration of substrate composition, riffles, and bank vegetation may be necessary. In the mean time, chemical water quality, based on BOD, COD, TSS, and nutrients, had no large spatial and temporal variations. Overall data analysis indicated that site 3 was largely impacted by the polluted-tributary, Keumho River and the downstreams showed better water quality due to the dilution of the polluted river water by Nam River and Hwang River.

Predicting the Effects of Agriculture Non-point Sources Best Management Practices (BMPs) on the Stream Water Quality using HSPF (HSPF를 이용한 농업비점오염원 최적관리방안에 따른 수질개선효과 예측)

  • Kyoung-Seok Lee;Dong Hoon Lee;Youngmi Ahn;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.99-110
    • /
    • 2023
  • Non-point source (NP) pollutants in an agricultural landuse are discharged from a large area compared to those in other land uses, and thus effective source control measures are needed. To develop appropriate control measures, it is necessary to quantify discharge load of each source and evaluate the degree of water quality improvement by implementing different options of the control measures. This study used Hydrological Simulation Program-FORTRAN (HSPF) to quantify pollutant discharge loads from different sources and effects of different control measures on water quality improvements, thereby supporting decision making in developing appropirate pollutant control strategies. The study area is the Gyeseong river watershed in Changnyeong county, Gyeongsangnam-do, with agricultural areas occupying the largest proportion (26.13%) of the total area except for the forest area. The main pollutant sources include chemical and liquid fertilizers for agricultural activities, and manure produced from small scale livestock facilities and applied to agriculture lands or stacked near the facilities. Source loads of chemical fertilizers, liquid fertilizers and livestock manure of small scale livestock facilities, and point sources such as municipal wastewater treatment plants (WWTPs), community WWTPs, private sewage treament plants were considered in the HSPF model setup. Especially, NITR and PHOS modules were used to simulate detailed fate and transport processes including vegitation uptake, nutrient deposition, adsorption/desorption, and loss by deep percolation. The HSPF model was calibrated and validated based on the observed data from 2015 to 2020 at the outlet of the watershed. The calibrated model showed reasonably good performance in simulating the flow and water quality. Five Pollutants control scenarios were established from three sectors: agriculture pollution management (drainge outlet control, and replacement of controlled release fertilizers), livestock pollution management (liquid fertilizer reduction, and 'manure management of small scale livestock facilities) and private STP management. Each pollutant control measure was further divided into short-term, mid-term, and long-term scenarios based on the potential achievement period. The simulation results showed that the most effective control measure is the replacement of controlled release fertilizers followed by the drainge outlet control and the manure management of small scale livestock facilities. Furthermore, the simulation showed that application of all the control measures in the entire watershed can decrease the annual TN and TP loads at the outlet by 40.6% and 41.1%, respectively, and the annual average concentrations of TN and TP at the outlet by 35.1% and 29.2%, respectively. This study supports decision makers in priotizing different pollutant control measures based on their predicted performance on the water quality improvements in an agriculturally dominated watershed.

Suggestion of Urban Regeneration Type Recommendation System Based on Local Characteristics Using Text Mining (텍스트 마이닝을 활용한 지역 특성 기반 도시재생 유형 추천 시스템 제안)

  • Kim, Ikjun;Lee, Junho;Kim, Hyomin;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.149-169
    • /
    • 2020
  • "The Urban Renewal New Deal project", one of the government's major national projects, is about developing underdeveloped areas by investing 50 trillion won in 100 locations on the first year and 500 over the next four years. This project is drawing keen attention from the media and local governments. However, the project model which fails to reflect the original characteristics of the area as it divides project area into five categories: "Our Neighborhood Restoration, Housing Maintenance Support Type, General Neighborhood Type, Central Urban Type, and Economic Base Type," According to keywords for successful urban regeneration in Korea, "resident participation," "regional specialization," "ministerial cooperation" and "public-private cooperation", when local governments propose urban regeneration projects to the government, they can see that it is most important to accurately understand the characteristics of the city and push ahead with the projects in a way that suits the characteristics of the city with the help of local residents and private companies. In addition, considering the gentrification problem, which is one of the side effects of urban regeneration projects, it is important to select and implement urban regeneration types suitable for the characteristics of the area. In order to supplement the limitations of the 'Urban Regeneration New Deal Project' methodology, this study aims to propose a system that recommends urban regeneration types suitable for urban regeneration sites by utilizing various machine learning algorithms, referring to the urban regeneration types of the '2025 Seoul Metropolitan Government Urban Regeneration Strategy Plan' promoted based on regional characteristics. There are four types of urban regeneration in Seoul: "Low-use Low-Level Development, Abandonment, Deteriorated Housing, and Specialization of Historical and Cultural Resources" (Shon and Park, 2017). In order to identify regional characteristics, approximately 100,000 text data were collected for 22 regions where the project was carried out for a total of four types of urban regeneration. Using the collected data, we drew key keywords for each region according to the type of urban regeneration and conducted topic modeling to explore whether there were differences between types. As a result, it was confirmed that a number of topics related to real estate and economy appeared in old residential areas, and in the case of declining and underdeveloped areas, topics reflecting the characteristics of areas where industrial activities were active in the past appeared. In the case of the historical and cultural resource area, since it is an area that contains traces of the past, many keywords related to the government appeared. Therefore, it was possible to confirm political topics and cultural topics resulting from various events. Finally, in the case of low-use and under-developed areas, many topics on real estate and accessibility are emerging, so accessibility is good. It mainly had the characteristics of a region where development is planned or is likely to be developed. Furthermore, a model was implemented that proposes urban regeneration types tailored to regional characteristics for regions other than Seoul. Machine learning technology was used to implement the model, and training data and test data were randomly extracted at an 8:2 ratio and used. In order to compare the performance between various models, the input variables are set in two ways: Count Vector and TF-IDF Vector, and as Classifier, there are 5 types of SVM (Support Vector Machine), Decision Tree, Random Forest, Logistic Regression, and Gradient Boosting. By applying it, performance comparison for a total of 10 models was conducted. The model with the highest performance was the Gradient Boosting method using TF-IDF Vector input data, and the accuracy was 97%. Therefore, the recommendation system proposed in this study is expected to recommend urban regeneration types based on the regional characteristics of new business sites in the process of carrying out urban regeneration projects."

A Structural Relationship of Topography, Developed Areas, and Riparian Vegetation on the Concentration of Total Nitrogen in Streams (지형, 개발지역, 수변림과 하천 내 총질소 농도와의 구조적 관계 분석)

  • Lee, Sang-Woo;Lee, Jong-Won;Park, Se-Rin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.1
    • /
    • pp.25-34
    • /
    • 2020
  • Land use in watersheds has been shown to be a major driving factor in determining the status of the water quality of streams. In this light, scientists have been investigating the roles of riparian vegetation on the relationships between land use in watersheds and the associated stream water quality. Numerous studies reported that riparian vegetation could alleviate the adverse effects caused by land use in watersheds and on stream water quality through various hydrological, biochemical and ecological mechanisms. However, this concept has been criticized as the true effects of riparian vegetation must be assessed by comprehensive models that mimic real environmental settings. This study aimed to estimate a comprehensive structural equation model integrating topography, land use, and characteristics of riparian vegetation. We used water quality data from the Nakdong River system monitored under the National Aquatic Ecosystem Monitoring Program (NAEMP) of the Korean Ministry of Environment (MOE). Also, riparian vegetation data and land use data were extracted from the Land Use/Land Cover map (LULC) produced by the MOE. The number of structural equation models (SEMs) were estimated in Amos of IBM SPSS. Study results revealed that land use was determined by elevation, and developed areas within a watershed significantly increased the concentration of Total Nitrogen (TN) in streams and LDI in riparian vegetation. On the contrary, developed areas significantly reduced LPI and PLAND. At the same time, PLAND and LDI significantly reduced the concentration of TN in streams. Thus, it was clear that developed areas in watersheds had both a direct and an indirect impact on the concentration of TN in streams, and spatial pattern and the amount of vegetation of riparian vegetation could significantly alleviate the negative impacts of developed areas on TN concentration in streams. To enhance stream water quality, reducing developed areas in a watershed is critical for long-term watershed management plans, restoration patterns for riparian vegetation could be immediately implemented since riparian areas were less developed than most other watersheds.

Stream Ecosystem Assessments, based on a Biological Multimetric Parameter Model and Water Chemistry Analysis (생물학적 다변수 모델 적용 및 수화학 분석에 의거한 갑천생태계 평가)

  • Bae, Dae-Yeul;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.2 s.116
    • /
    • pp.198-208
    • /
    • 2006
  • This research was to apply a multi-metric approach, so called the Index of Biological Integrity (IBI) as a tool for biological evaluations of water environments, to a wadable stream. For the study, we surveyed 5 sampling locations in Kap Stream during August 2004 ${\sim}$ September 2005. We also compared the biological data with long-term water quality data, obtained from the Ministry of Environment, Korea and physical habitat conditions based on the Quantitative Habitat Evaluation Index (QHEI). We used ten metric systems for the IBI model to evaluate biological stream health. Overall IBI values in Kap Stream averaged 24 (range: 20${\sim}$30, n=5), indicating a "fair ${\sim}$ poor" conditions according to the modified criteria of Karr (1981) and US EPA(1993). Exclusive of 4th survey, average IBI values at the upstream reach (S1 ${\sim}$ S3)and downstream reach (S4 ${\sim}$ S5) were 20 and 24, respectively. However, in 4th survey the averages were 21 and 20 in the upstream and downstream reaches, respectively. This difference was larger in the upstream than in the downstream because of physical condition disturbed during summer monsoon. Values of the QHEI varied from 75(fair condition) to 148 (good condition) and values of QHEI in the S3 were significantly (P=0.001, n=5) lower than other sites. Biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were greater by 3 ${\sim}$ 8 fold in the downstream than in the upstream reach. We believe that present IBI approach applied in this study may be used as a key tool to set up specific goals for restoration of Kap Stream.

Estimation of the Three-dimensional Vegetation Landscape of the Donhwamun Gate Area in Changdeokgung Palace through the Rubber Sheeting Transformation of (<동궐도(東闕圖)>의 러버쉬팅변환을 통한 창덕궁 돈화문 지역의 입체적 식생 경관 추정)

  • Lee, Jae-Yong
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.2
    • /
    • pp.138-153
    • /
    • 2018
  • The purpose of this study was to analyze , which was made in the late Joseon Dynasty to specify the vegetation landscape of the Donhwamun Gate area in Changdeokgung Palace. The study results can be summarized as below. First, based on "Jieziyuan Huazhuan(芥子園畵傳)", the introductory book of tree expression delivered from China in the 17th century, allowed the classification criteria of the trees described in the picture to be established and helped identify their types. As a result of the classification, there were 10 species and 50 trees in the Donhwamun Gate area of . Second, it was possible to measure the real size of the trees described in the picture through the elevated drawing scale of . The height of the trees ranged from a minimum of 4.37 m to a maximum of 22.37 m. According to the measurement results, compared to the old trees currently living in Changdeokgung Palace, the trees described in the picture were found to be produced in almost actual size without exaggeration. Thus, the measured height of the trees turned out to be appropriate as baseline data for reproduction of the vegetation landscape. Third, through the Rubber Sheeting Transformation of , it was possible to make a ground plan for the planting of on the current digital topographic map. In particular, as the transformed area of was departmentalized and control points were added, the precision of transformation improved. It was possible to grasp the changed position of planting as well as the change in planting density through a ground plan of planting of . Lastly, it was possible to produce a three-dimensional vegetation landscape model by using the information of the shape of the trees and the ground plan for the planting of . Based on the three-dimensional model, it was easy to examine the characteristics of the three-dimensional view of the current vegetation via the view axis, skyline, and openness to and cover from the adjacent regions at the level of the eyes. This study is differentiated from others in that it verified the realism of and suggested the possibility of ascertaining the original form of the vegetation landscape described in the painting.

A Study on the Reproducibility of 3D Shape Model of Garden Cultural Heritage using Photogrammetry with SNS Photographs - Focused on Soswaewon Garden, Damyang(Scenic Site No.40) - (SNS 사진과 사진측량을 이용한 정원유산의 3차원 형상 재현 가능성 연구 - 명승 제40호 담양 소쇄원(潭陽 瀟灑園)을 대상으로 -)

  • Kim, Choong-Sik;Lee, Sang-Ha
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.4
    • /
    • pp.94-104
    • /
    • 2018
  • This study examined photogrammetric reconstruction techniques that can measure the original form of a cultural property utilizing photographs taken in the past. During the research process, photographs taken in the past as well as photograph on the internet of Soswaewon Garden in Damyang(scenic site 40) were collected and utilized. The landscaping structures of Maedae, Aiyangdan, Ogokmun Wall, and Yakjak and natural scenery Gwangseok, of which photographs can be taken from any 360 degree direction from a close distance or a far distance without any barriers in the way, were selected and tested for the possibility of reproducing three-dimensional shapes. The photography method of 151 landscape photographs (58.6%) from internet portal sites for the aforementioned five landscape subjects containing information on the date the photograph was taken, focal length, and exposure were analyzed. As a result of the analysis, it was revealed that the majority of the photographs tend to focus on important parts of each subject. In addition, we discovered that there are two or three photography methods that internet users preferred in regards to each landscape subject. For the purposes of the experiment, photographs in which a single scene consistently appears for each landscape subject and it was determined that there was a high level of preference related to the photography method were analyzed, and three-dimensional mesh shape model was produced with a photoscan program to analyze the reproducibility of three-dimensional shapes. Based on the results of the reproduction, it was relatively possible to reproduce three-dimensional shapes for artifacts such as Ogukmun wall, Maedae, and Aeyangdan, but it was impossible to reproduce three-dimensional images for natural scenery or an object that has similar texture such as Yakjak and Gwangseok. As a result of experimentation related to the reconstruction of three-dimensional shapes with the photographs taken on site using a photography method similar to that of the photographs selected as previously mentioned, there was success related to reproducing the three-dimensional shapes of Yakjak and Gwangseok, of which it was not possible to do so through the photographs that had been collected previously. In addition, through comparison of past and present images, it was possible to measure the exact sizes as well as discover any changes that have taken place. If past photographs taken by tourists or landscape architects of cultural properties can be obtained, the three-dimensional shapes from a particular period of time can be reproduced. If this technology becomes widespread, it will increase the level of accuracy and reliability in regards to measuring the past shapes of cultural landscape properties and examining any changes to the properties.

A Study on the Spatial Control Effect of Panjang in Donggwoldo (동궐도(東闕圖) 판장(板墻)의 공간통제 효과에 관한 연구)

  • HA Yujeong;KIM Choongsik
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.4
    • /
    • pp.196-209
    • /
    • 2022
  • This study compared and analyzed the spatial division function and role of partitions by comparing the entire space and the spatial changes before and after the installation of partitions in <Donggwoldo>, which was manufactured in the late Joseon Dynasty. As a research method, a set standard was prepared to decompose the space of <Donggwoldo> into a unit space, and the standard was set according to the role and height of the space by classifying it into a main space, sub space, and transition space. Two convex maps were prepared according to before and after the installation of the Panjang, and the values of connectivity, control, and integration, which are spatial syntax variables, were calculated and analyzed. The results of the study are as follows. First, the partition in <Donggwoldo(東闕圖)> did not affect the overall spatial arrangement and control or connection of Donggwol, but the movement and access of space is limited to specific areas. Second, the partition was a facility intensively distributed in Naejeon(內殿) and Donggung(東宮) to be used actively in the way of space utilization. It shows that the unit space increased rapidly due to the installation of the partition. Since the partition was installed in the spaces that were open and under high control in the case of Naejeon(內殿), it helped to secure private spaces as closed ones under low control. On the other hand, for Donggung(東宮), the spaces were compartmented and divided with the partition to guide the movement path through narrow gates of the partition and increase the depth of the space. This helped to create spaces that are free and can be hidden as it increased the number of spaces coming through. Third, In addition to the functions of "eye blocking, space division, and movement path control" revealed in prior research, the partition has created a "space that is easy to control" within a specific area. The installation of the partition reduced the scale through the separation of spaces, but it occurred the expansion of the movement path and space. Also, the partition functioned to strengthen hiding and closure or increase openness as well through space division. This study is significant in that it revealed the value of the spatial control function of panjang through the analysis of spatial control and depth by analyzing the function of the partition with a mathematical model in addition to the analysis and study of the function and role of panjang. In addition, it is valuable in that it has prepared a framework for analysis tools that can be applied to traditional residential complexes similar to palaces by applying space syntax to <Donggungdo> to create convex spaces according to unit space division and connection types of palace architecture and landscape elements.