• Title/Summary/Keyword: Response variability

Search Result 402, Processing Time 0.028 seconds

Multiresponse Optimization Through A New Desirability Function Considering Process Parameter Fluctuation (공정변수의 변동을 고려한 만족도 함수를 통한 다중반응표면 최적화)

  • Gwon Jun-Beom;Lee Jong-Seok;Lee Sang-Ho;Jeon Chi-Hyeok;Kim Gwang-Jae
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.39-44
    • /
    • 2004
  • A desirability function approach to a multiresponse problem is proposed considering process parameter fluctuation as well as distance-to-target of response and response variance. The variation of process parameters amplifies the variance of responses. It is called POE (propagation of error), which is defined as the standard deviation of the transmitted variability in the response as a function of process parameters. In order to obtain more robust process parameters, this variability should be considered in the optimization problem. The proposed method is illustrated using a rubber product case.

  • PDF

Stochastic finite element analysis of plate structures by weighted integral method

  • Choi, Chang-Koon;Noh, Hyuk-Chun
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.703-715
    • /
    • 1996
  • In stochastic analysis, the randomness of the structural parameters is taken into consideration and the response variability is obtained in addition to the conventional (mean) response. In the present paper the structural response variability of plate structure is calculated using the weighted integral method and is compared with the results obtained by different methods. The stochastic field is assumed to be normally distributed and to have the homogeneity. The decomposition of strain-displacement matrix enabled us to extend the formulation to the stochastic analysis with the quadratic elements in the weighted integral method. A new auto-correlation function is derived considering the uncertainty of plate thickness. The results obtained in the numerical examples by two different methods, i.e., weighted integral method and Monte Carlo simulation, are in a close agreement. In the case of the variable plate thickness, the obtained results are in good agreement with those of Lawrence and Monte Carlo simulation.

Effect of Random Poisson's Ratio on the Response Variability of Composite Plates

  • Noh, Hyuk-Chun;Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.727-737
    • /
    • 2010
  • Together with the Young's modulus the Poisson's ratio is another independent material parameter that governs the behavior of a structural system. Therefore, it is meaningful to evaluate separately the influence of the parameter on the random response of the structural system. To this end, a formulation dealing with the spatial randomness in the Poisson's ratio in laminated composite plates is proposed. The main idea of the paper is to transform the fraction form of the constitutive coefficients into the expanded form in an ascending order of the stochastic field function. To validate the adequacy of the formulation, a square plate is chosen and the computation results are compared with those obtained using conventional Monte Carlo simulation. It is observed that the results show good agreement with those by the Monte Carlo simulation(MCS).

Comparing of the effects of scaled and real earthquake records on structural response

  • Ergun, Mustafa;Ates, Sevket
    • Earthquakes and Structures
    • /
    • v.6 no.4
    • /
    • pp.375-392
    • /
    • 2014
  • Time history analyses have been preferred commonly in earthquake engineering area to determine earthquake performances of structures in recent years. Advances in computer technology and structural analysis have led to common usage of time history analyses. Eurocode 8 allows the use of real earthquake records as an input for linear and nonlinear time history analyses of structures. However, real earthquake records with the desired characteristics sometimes may not be found, for example depending on soil classes, in this case artificial and synthetic earthquake records can be used for seismic analyses rather than real records. Selected earthquake records should be scaled to a code design spectrum to reduce record to record variability in structural responses of considered structures. So, scaling of earthquake records is one of the most important procedures of time history analyses. In this paper, four real earthquake records are scaled to Eurocode 8 design spectrums by using SESCAP (Selection and Scaling Program) based on time domain scaling method and developed by using MATLAB, GUI software, and then scaled and real earthquake records are used for linear time history analyses of a six-storied building. This building is modeled as spatial by SAP2000 software. The objectives of this study are to put basic procedures and criteria of selecting and scaling earthquake records in a nutshell, and to compare the effects of scaled earthquake records on structural response with the effects of real earthquake records on structural response in terms of record to record variability of structural response. Seismic analysis results of building show that record to record variability of structural response caused by scaled earthquake records are fewer than ones caused by real earthquake records.

Non-statistical Stochastic Finite Element Method Employing Higher Order Stochastic Field Function (고차의 추계장 함수와 이를 이용한 비통계학적 추계론적 유한요소해석)

  • Noh, Hyuk-Chun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.383-390
    • /
    • 2006
  • In this paper, a stochastic field that is compatible with Monte Carlo simulation is suggested for an expansion-based stochastic analysis scheme of weighted integral method. Through investigation on the way of affection of stochastic field function on the displacement vector in the series expansion scheme, it is noticed that the stochastic field adopted in the weighted integral method is not compatible with that appears in the Monte Carlo simulation. As generally recognized in the field of stochastic mechanics, the response variability is not a linear function of the coefficient of variation of stochastic field but a nonlinear function with increasing variability as the intensity of uncertainty is increased. Employing the stochastic field suggested in this study, the response variability evaluated by means of the weighted integral scheme is reproduced with high precision even for uncertain fields with moderately large coefficient of variation. Besides, despite the fact that only the first-order expansion is employed, an outstanding agreement between the results of expansion-based weighted integral method and Monte Carlo simulation is achieved.

Contribution of local site-effect on the seismic response of suspension bridges to spatially varying ground motions

  • Adanur, Suleyman;Altunisik, Ahmet C.;Soyluk, Kurtulus;Dumanoglu, A. Aydin;Bayraktar, Alemdar
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1233-1251
    • /
    • 2016
  • In this paper, it is aimed to determine the stochastic response of a suspension bridge subjected to spatially varying ground motions considering the geometric nonlinearity. Bosphorus Suspension Bridge built in Turkey and connects Europe to Asia in Istanbul is selected as a numerical example. The spatial variability of the ground motion is considered with the incoherence, wave-passage and site-response effects. The importance of site-response effect which arises from the difference in the local soil conditions at different support points of the structure is also investigated. At the end of the study, mean of the maximum and variance response values obtained from the spatially varying ground motions are compared with those of the specialised cases of the ground motion model. It is seen that each component of the spatially varying ground motion model has important effects on the dynamic behaviour of the bridge. The response values obtained from the general excitation case, which also includes the site-response effect causes larger response values than those of the homogeneous soil condition cases. The variance values calculated for the general excitation case are dominated by dynamic component at the deck and Asian side tower. The response values obtained for the site-response effect alone are larger than the response values obtained for the incoherence and wave-passage effects, separately. It can be concluded that suspension bridges are sensitive to the spatial variability of ground motion. Therefore, the incoherence, the wave-passage and especially the site-response effects should be considered in the stochastic analysis of this type of engineering structures.

Probabilistic Behavior of In-plane Structure due to Multiple Correlated Uncertain Material Constants (상호 상관관계가 있는 다중 재료상수의 불확실성에 의한 평면구조의 확률론적 거동)

  • Noh Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.291-302
    • /
    • 2005
  • Due to the importance of the parameter in structural response, the uncertain elastic modulus was located at the center of stochastic analysis, where the response variability caused by the uncertain system parameters is pursued. However when we analyze the so-called stochastic systems, as many parameters as possible must be included in the analysis if we want to obtain the response variability that can reach a true one, even in an approximate sense. In this paper, a formulation to determine the statistical behavior of in-plane structures due to multiple uncertain material parameters, i.e., elastic modulus and Poisson's ratio, is suggested. To this end, the polynomial expansion on the coefficients of constitutive matrix is employed. In constructing the modified auto-and cross-correlation functions, use is made of the general equation for n-th moment. For the computational purpose, the infinite series of stochastic sub-stiffness matrices is truncated preserving required accuracy. To demons4rate the validity of the proposed formulation, an exemplary example is analyzed and the results are compared with those obtained by means of classical Monte Carlo simulation, which is based on the local averaging scheme.

Interannual Variability of Summer Chlorophyll in the Southern Ocean: ENSO Effects (남극해 여름 클로로필 경년 변동: 엔소의 영향)

  • Kim, Yong Sun;Jang, Chan Joo;Son, Young-Baek
    • Ocean and Polar Research
    • /
    • v.37 no.2
    • /
    • pp.149-159
    • /
    • 2015
  • The Southern Ocean (SO) plays a primary role in global climate by storing and transporting anthropogenic carbon dioxide through the meridional overturning circulation and the biological pumping process. In this study, we aim to investigate interannual variability of summer chlorophyll concentration in the SO and its relation with the El $Ni{\tilde{n}}o$ Southern Oscillation (ENSO), using satellite ocean color data covering 16 years from 1997 to 2012. During El $Ni{\tilde{n}}o$ periods, chlorophyll concentration tends to increase in the subtropics (north of the subantarctic front). This chlorophyll increase is likely linked to El $Ni{\tilde{n}}o$-induced surface cooling that increases nutrient supply through enhanced vertical mixing in the subtropics. On the other hand, the subpolar gyres show localized chlorophyll changes in response to the ENSO. The localized response seems to be primarily attributed to changes in sea-ice concentrations. Our findings suggest that ENSO contributes interannual variability of chlorophyll in the SO through different mechanisms depending on regions.

On the use of alternative water use efficiency parameters in dryland ecosystems: a review

  • Kang, Wenping;Kang, Sinkyu
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.246-253
    • /
    • 2019
  • Background: Water use efficiency (WUE) is an indicator of the trade-off between carbon uptake and water loss to the atmosphere at the plant or ecosystem level. Understanding temporal dynamics and the response of WUE to climatic variability is an essential part of land degradation assessments in water-limited dryland regions. Alternative definitions of and/or alternative methodologies used to measure WUE, however, have hampered intercomparisons among previous studies of different biomes and regions. The present study aims to clarify semantic differences among WUE parameters applied in previous studies and summarize these parameters in terms of their definition and methodology. Additionally, the consistency of the responses of alternative WUE parameters to interannual changes in moisture levels in Northeast Asia dryland regions (NADRs) was tested. Results: The literature review identified more than five different WUE parameters defined at leaf and ecosystem levels and indicates that major conclusions regarding the WUE response to climatic variability were partly inconsistent depending on the parameters used. Our demonstration of WUE in NADR again confirmed regional inconsistencies and further showed that inconsistencies were more distinct in hyper- and semi-arid climates than in arid climates, which might reflect the different relative roles of physical and biological processes in the coupled carbon-water process. Conclusions: The responses of alternative WUE parameters to drying and wetting may be different in different regions, and regionally different response seems to be related to aridity, which determines vegetation coverage.