• Title/Summary/Keyword: Response to climate changes

Search Result 180, Processing Time 0.03 seconds

Impacts of Ocean Currents on the South Indian Ocean Extratropical Storm Track through the Relative Wind Effect

  • Hyodae Seo;Hajoon Song;Larry W. O'Neill;Matthew R. Mazloff;Bruce D. Cornuelle
    • Journal of Climate Change Research
    • /
    • v.34 no.22
    • /
    • pp.9093-9113
    • /
    • 2021
  • This study examines the role of the relative wind (RW) effect (wind relative to ocean current) in the regional ocean circulation and extratropical storm track in the south Indian Ocean. Comparison of two high-resolution regional coupled model simulations with and without the RW effect reveals that the most conspicuous ocean circulation response is the significant weakening of the overly energetic anticyclonic standing eddy off Port Elizabeth, South Africa, a biased feature ascribed to upstream retroflection of the Agulhas Current (AC). This opens a pathway through which the AC transports the warm and salty water mass from the subtropics, yielding marked increases in sea surface temperature (SST), upward turbulent heat flux (THF), and meridional SST gradient in the Agulhas retroflection region. These thermodynamic and dynamic changes are accompanied by the robust strengthening of the local low-tropospheric baroclinicity and the baroclinic wave activity in the atmosphere. Examination of the composite life cycle of synoptic-scale storms subjected to the high-THF events indicates a robust strengthening of the extratropical storms far downstream. Energetics calculations for the atmosphere suggest that the baroclinic energy conversion from the basic flow is the chief source of increased eddy available potential energy, which is subsequently converted to eddy kinetic energy, providing for the growth of transient baroclinic waves. Overall, the results suggest that the mechanical and thermal air-sea interactions are inherently and inextricably linked together to substantially influence the extratropical storm tracks in the south Indian Ocean.

Seasonal Difference in Linear Trends of Satellite-derived Chlorophyll-a in the East China Sea (위성 해색자료에서 추정한 동중국해 클로로필 선형경향의 계절별 차이)

  • Son, Young Baek;Jang, Chan Joo;Kim, Sang-Hyun
    • Ocean and Polar Research
    • /
    • v.35 no.2
    • /
    • pp.147-155
    • /
    • 2013
  • The purpose of this study is to investigate seasonal difference in linear trends in satellite-derived chlorophyll-a concentration (Chl-a) and their related environmental changes in the South Sea of Korea (SSK) and East China Sea (ECS) for recent 15 years (Jan. 1998~Dec. 2012) by analyzing climatological data of Chl-a, Rrs(555), sea surface wind (SSW) and nutrient. A linear trend analysis of Chl-a data reveals that, during recent 15 years, the spring bloom was enhanced in most of the ECS, while summer and fall blooms were weakened. The increased spring (Mar. - May) Chl-a was associated with strengthened winter (Dec. - Feb.) wind that probably provided more nutrient into the upper ocean from the deep. The causes of decreased summer (Jun. - Aug.) Chl-a in the northern ECS were uncertain, but seemed to be related with the nutrient limitation. Recently (after 2006), low-salinity Changjiang diluted water in the south of Jeju and the SSK had lower phosphate that caused increase in N/P ratio with Chl-a decrease. The decreased fall (Sep. - Nov.) Chl-a was associated with weakened wind that tends to entrain less nutrient into the upper ocean from the deep. This study suggests that phytoplankton in the ECS differently changes in response to environmental changes depending on season and region.

Prediction of Distribution Changes of Carpinus laxiflora and C. tschonoskii Based on Climate Change Scenarios Using MaxEnt Model (MaxEnt 모델링을 이용한 기후변화 시나리오에 따른 서어나무 (Carpinus laxiflora)와 개서어나무 (C. tschonoskii)의 분포변화 예측)

  • Lee, Min-Ki;Chun, Jung-Hwa;Lee, Chang-Bae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.55-67
    • /
    • 2021
  • Hornbeams (Carpinus spp.), which are widely distributed in South Korea, are recognized as one of the most abundant species at climax stage in the temperate forests. Although the distribution and vegetation structure of the C. laxiflora community have been reported, little ecological information of C. tschonoskii is available. Little effort was made to examine the distribution shift of these species under the future climate conditions. This study was conducted to predict potential shifts in the distribution of C. laxiflora and C. tschonoskii in 2050s and 2090s under the two sets of climate change scenarios, RCP4.5 and RCP8.5. The MaxEnt model was used to predict the spatial distribution of two species using the occurrence data derived from the 6th National Forest Inventory data as well as climate and topography data. It was found that the main factors for the distribution of C. laxiflora were elevation, temperature seasonality, and mean annual precipitation. The distribution of C. tschonoskii, was influenced by temperature seasonality, mean annual precipitation, and mean diurnal rang. It was projected that the total habitat area of the C. laxiflora could increase by 1.05% and 1.11% under RCP 4.5 and RCP 8.5 scenarios, respectively. It was also predicted that the distributional area of C. tschonoskii could expand under the future climate conditions. These results highlighted that the climate change would have considerable impact on the spatial distribution of C. laxiflora and C. tschonoskii. These also suggested that ecological information derived from climate change impact assessment study can be used to develop proper forest management practices in response to climate change.

New Backstepping-DSOGI hybrid control applied to a Smart-Grid Photovoltaic System

  • Nebili, Salim;Benabdallah, Ibrahim;Adnene, Cherif
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.1-12
    • /
    • 2022
  • In order to overcome the power fluctuation issues in photovoltaic (PV) smart grid-connected systems and the inverter nonlinearity model problem, an adaptive backstepping command-filter and a double second order generalized Integrators (DSOGI) controller are designed in order to tune the AC current and the DC-link voltage from the DC side. Firstly, we propose to present the filter mathematical model throughout the PV system, at that juncture the backstepping control law is applied in order to control it, Moreover the command filter is bounded to the controller aiming to exclude the backstepping controller differential increase. Additionally, The adaptive law uses Lyapunov stability criterion. Its task is to estimate the uncertain parameters in the smart grid-connected inverter. A DSOGI is added to stabilize the grid currents and eliminate undesirable harmonics meanwhile feeding maximum power generated from PV to the point of common coupling (PCC). Then, guaranteeing a dynamic effective response even under very unbalanced loads and/or intermittent climate changes. Finally, the simulation results will be established using MATLAB/SIMULINK proving that the presented approach can control surely the smart grid-connected system.

Effect of Continuous use of Inorganic Fertilizer on the Soil Organisms and Food Chain (무기질비료의 장기연용이 토양생물 및 먹이연쇄에 미치는 영향)

  • Eo, Jinu;Park, Kee-Choon;Park, Jin-Myeon;Kim, Myung-Hyun;Choi, Soon-Kun;Bang, Hea-Seon
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.39-45
    • /
    • 2016
  • BACKGROUND: This study aimed to evaluate the combined effects of three components (NPK) of chemical fertilizers with basal application of compost on soil organisms.METHODS AND RESULTS: The soil was treated with five treatments continuously for 15 years: control, PK, NK, NP and NPK. The application of N increased plant growth or biomass, and enhanced organic matter content in the soils. Levels of microbial phospholipid fatty acids (PLFAs) in the soils did not show marked differences among the soils treated with different treatments. However, the principal component analysis showed the changes in the structure of the microbial community in the soil, depending on treatments added. Nitrogen application caused a decrease of pH and an increase of EC in the soils, and these environmental stresses appeared to offset the promoting effect of increased organic matter content on microbial abundance. The abundance of bacterivorous nematodes was the highest in the soils after treating NPK; however, the abundance of fungivorous nematodes was unaffected. There was no significant correlation between the abundances of microbial groups and their feeders. Organic matter content was significantly correlated with the abundance of nematodes in the soils.CONCLUSION: Our results showed that chemical fertilizers affect the soil food chains through both biotic and abiotic factors, and a trophic cascade in the soils may not occur in response to long-term fertilization.

A Rapid and Efficient Method for Construction of an Infectious Clone of Tomato yellow leaf curl virus

  • Bang, Bongjun;Lee, Jongyun;Kim, Sunyoung;Park, Jungwook;Nguyen, Thao Thi;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.30 no.3
    • /
    • pp.310-315
    • /
    • 2014
  • Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus, is responsible for one of the most devastating viral diseases in tomato-growing countries and is becoming a serious problem in many subtropical and tropical countries. The climate in Korea is getting warmer and developing subtropical features in response to global warming. These changes are being accompanied by TYLCV, which is now becoming a large problem in the Korean tomato industry. The most effective way to reduce damage caused by TYLCV is to breed resistant varieties of tomatoes. To accomplish this, it is necessary to establish a simple inoculation technique for the efficient evaluation of resistance to TYLCV. Here, we present the rolling circle amplification (RCA) method, which employs a bacteriophage using phi-29 DNA polymerase for construction of infectious TYLCV clones. The RCA method is simple, does not require sequence information for cloning, and is less expensive and time consuming than conventional PCR based-methods. Furthermore, RCA-based construction of an infectious clone can be very useful to other emerging and unknown geminiviruses in Korea.

Observational Evidence of Giant Cloud Condensation Nucleus Effects on the Precipitation Sensitivity in Marine Stratocumulus Clouds

  • Jung, Eunsil
    • Journal of the Korean earth science society
    • /
    • v.43 no.4
    • /
    • pp.498-510
    • /
    • 2022
  • Cloud-aerosol interactions are one of the paramount but least understood forcing factors in climate systems. Generally, an increase in the concentration of aerosols increases the concentration of cloud droplet numbers, implying that clouds tend to persist for longer than usual, suppressing precipitation in the warm boundary layer. The cloud lifetime effect has been the center of discussion in the scientific community, partly because of the lack of cloud life cycle observations and partly because of cloud problems. In this study, the precipitation susceptibility (So) matrix was employed to estimate the aerosols' effect on precipitation, while the non-aerosol effect is minimized. The So was calculated for the typical coupled, well-mixed maritime stratocumulus decks and giant cloud condensation nucleus (GCCN) seeded clouds. The GCCN-artificially introduced to the marine stratocumulus cloud decks-is shown to initiate precipitation and reduces So to approximately zero, demonstrating the cloud lifetime hypothesis. The results suggest that the response of precipitation to changes in GCCN must be considered for accurate prediction of aerosol-cloud-precipitation interaction by model studies

Effects of Differentiated Temperature Based on Growing Season Temperature on Growth and Physiological Response in Chinese Cabbage 'Chunkwang' (고랭지 여름배추 주산지의 기온을 기준으로 한 수준별 온도가 배추 '춘광'의 생육 및 생리반응에 미치는 영향)

  • Son, In-Chang;Moon, Kyung Hwan;Song, Eun Young;Oh, Soonja;Seo, Hyeongho;Moon, Young Eel;Yang, Jinyoung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.254-260
    • /
    • 2015
  • Changes of the growth, quality and physiological response of Chinese cabbage cv 'Chunkwang' in response to five different temperature treatments based on climate change scenario were investigated during the growing season. The treatments consisted of normal year temperature $-2.0^{\circ}C$ (I), normal year temperature (II; Control group), normal year temperature $+2.0^{\circ}C$ (III), normal year temperature $+4.0^{\circ}C$ (IV), and normal year temperature $+6.0^{\circ}C$ (V). Regarding fresh weight, number of leaves, and leaf area were high in group IV, and V before the head formation stage, but it has decreased during the later growth period. Rate of frangibleness sympton was the highest in group V as 85.7%, and it was decreased in group IV (64.3%), group III (28.6%), group II (14.3%), and group I (7.1%). Regarding photosynthetic rate, group III, IV, and V showed relatively high photosynthetic rate at 20 DAP but it was reduced dramatically during the later growth period. Transpiration and stomatal conductance showed the similar trend with the photosynthetic rate. When comparing the chlorophyll fluorescence reaction of each treatment group at 50 DAP, Fv/Fm in group I was highest as 8.04 among all treatment groups and the lowest in group IV as 7.15.

Differently expressed genes of soybean by ambient heat stress

  • Jung, Inuk;Kim, Jin Hyeon;Jung, Woosuk
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.156-156
    • /
    • 2017
  • Plants are grown under constitutive changing of environmental conditions and response to external conditions at both protein and transcription level. The effects of heat on plant growth are broad and influence the yield directly. Heat stresses could be classified depend on intensity and duration. Fundamental changes of growth condition by climate change maybe or maybe not classified as a stress on plant growth. The effects of a short and unanticipated impact of elevated heat on plant could be different with those of under longer extension of ambient heat. To examine differently expressed gene sets by ambient heat stress of soybean, we grow the soybean in normal condition for three weeks. After that, soybean plants move to growth chamber. The temperature of growth chamber increase up to $9^{\circ}C$ for four days. We have extracted mRNA and micro RNA every 24 hours and carried RNA sequence analysis. We found major metabolic pathways affected by ambient heat stress. Mainly carbon metabolism, translation machinery and amino acid synthesis are affected. We discussed the expression patterns of genes of heat sensing and hormone responses.

  • PDF

Effects of elevated CO2 concentration and temperature on growth and production of Oryza sativa L. cv. Ilmi, one of the main rice varieties in Korea

  • Lee, Eung-Pill;Park, Jae-Hoon;Jang, Rae-Ha;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.38 no.3
    • /
    • pp.335-342
    • /
    • 2015
  • This research was conducted to examine the changes in growth and production of Oryza sativa L. cv. Ilmi, which was developed to cultivate high yielding rice variety in the Southern plains of Korea. The seedlings of the rice were cultivated from May to October in 2012 under three different conditions: control, AC-AT, ambient $CO_2$ + ambient temperature; AC-ET, ambient $CO_2$ + elevated temperature; EC-ET, elevated $CO_2$ + elevated temperature. The aboveground biomass, belowground biomass, the total biomass of the rice, and panicle weight per individual were the heaviest in the EC-ET. But, the number of grains per panicle and the weight of one grain was higher at the condition of AC-ET and EC-ET than that of AC-AT. The number of tiller was higher at the condition of AC-AT and AC-ET than that of EC-ET. However, there was no significant difference in the number of panicles per individual and the ripened grain rate among the control and global warming treatments. Crop yield was the highest in the EC-ET. This result means that the global warming condition should be considered in the selection of suitable paddy field for the limibyeo in the future.