• 제목/요약/키워드: Response table

검색결과 626건 처리시간 0.033초

Shaking table test of wooden building models for structural identification

  • Altunisik, Ahmet C.
    • Earthquakes and Structures
    • /
    • 제12권1호
    • /
    • pp.67-77
    • /
    • 2017
  • In this paper, it is aimed to present a comparative study about the structural behavior of tall buildings consisting of different type of materials such as concrete, steel or timber using finite element analyses and experimental measurements on shaking table. For this purpose, two 1/60 scaled 28 and 30-stories wooden building models with $40{\times}40cm$ and $35{\times}35cm$ ground/floor area and 1.45 m-1.55 m total height are built in laboratory condition. Considering the frequency range, mode shapes, maximum displacements and relative story drifts for structural models as well as acceleration, displacement and weight limits for shaking table, to obtain the typical building response as soon as possible, balsa is selected as a material property, and additional masses are bonded to some floors. Finite element models of the building models are constituted in SAP2000 program. According to the main purposes of earthquake resistant design, three different earthquake records are used to simulate the weak, medium and strong ground motions. The displacement and acceleration time-histories are obtained for all earthquake records at the top of building models. To validate the numerical results, shaking table tests are performed. The selected earthquake records are applied to first mode (lateral) direction, and the responses are recorded by sensitive accelerometers. Comparisons between the numerical and experimental results show that shaking table tests are enough to identify the structural response of wooden buildings. Considering 20%, 10% and 5% damping rations, differences are obtained within the range 4.03-26.16%, 3.91-65.51% and 6.31-66.49% for acceleration, velocity and displacements in Model-1, respectively. Also, these differences are obtained as 0.49-31.15%, 6.03-6.66% and 16.97-66.41% for Model-2, respectively. It is thought that these differences are caused by anisotropic structural characteristic of the material due to changes in directions parallel and perpendicular to fibers, and should be minimized using the model updating procedure.

측벽 엔드밀 가공 시 반응표면법을 이용한 최적가공조건 (Optimum Manufacturing Condition of Side Wall End Milling Using Response Surface Methodology)

  • 최재기;박진우;홍도관;우병철;안찬우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1313-1317
    • /
    • 2007
  • Manufacturing condition is one of the most important factors in precision manufacturing. In this study, we optimized minimizing the Z vibration acceleration using RSM(response surface methodology) by table of orthogonal array. RSM was well adapted to make the analytical model of the minimum vibration acceleration and enable the objective function to be easily created and a great deal of the time in computation to be saved. Therefore, it is expected that the proposed optimization procedure using RSM can be easily utilized to solve the optimization problem of manufacture condition.

  • PDF

측벽 엔드밀 가공 시 반응표면법을 이용한 최적 가공조건 (Optimum Working Condition of Side Wall End Milling Using Response Surface Methodology)

  • 홍도관;최재기;박진우;백황순;안찬우
    • 한국소음진동공학회논문집
    • /
    • 제18권11호
    • /
    • pp.1097-1104
    • /
    • 2008
  • Working condition is one of the most important factors in precision working. In this study, we optimized the vibration acceleration of working progress direction using RSM(response surface methodology) by table of orthogonal array. RSM was well adapted to make analytic model for minimizing vibration acceleration, created the objective function and saved a great deal of computational time. Therefore, it is expected that the proposed optimization procedure using RSM can be easily utilized to solve the optimization problem of working condition. The experimental results of the surface roughness and vibration acceleration showed the validity of the proposed working condition of side wall end-milling as it can be observed.

확장 클래스-속성 뷰기반의 SPARQL-SQL 질의 변환 및 속도 개선 (SPARQL-SQL Conversion and Improvement in Response Time based on Expanded Class-Property Views)

  • 이승우;김평;김재한;성원경
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2007년도 추계 종합학술대회 논문집
    • /
    • pp.84-88
    • /
    • 2007
  • 데이터베이스관리시스템(DBMS)이 대용량의 트리플 형식의 지식을 저장하기 위한 도구로 사용되는 것이 일반적인 추세인 상황에서, 보다 효율적으로 트리플 형식의 지식을 저장/관리/추론/질의하기 위해 DBMS에 어떠한 형태로 스키마를 설계하느냐는 여전히 이슈로 남아 있다. 본 논문에서는 효율적인 질의 관점에서 확장 클래스-속성 뷰(ECPV)를 활용하여 질의를 처리하는 방법과 이로 인해 얻어지는 응답 속도의 개선을 소개한다. DBMS기반의 추론 엔진의 응답 시간은 결국 테이블의 크기와 조인 횟수에 비례하게 되며, 질의가 복잡할수록 필요한 조인 횟수도 늘어나므로 응답 시간도 증가하게 된다. ECPV는 바로 조인 횟수를 줄이기 위해 미리 조인 연산을 수행해 둔 것으로, 질의 과정에서 이를 활용하기 위해서는 SPARQL 질의를 ECPV를 사용하는 SQL 질의로 변환해줘야 한다. 본 논문은 이러한 변환 과정과 함께 실험을 통해 응답 속도의 개선 정도를 제시한다.

  • PDF

Shaking table test and numerical analysis of nuclear piping under low- and high-frequency earthquake motions

  • Kwag, Shinyoung;Eem, Seunghyun;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi;Chang, Sungjin;Jeon, Bubgyu
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3361-3379
    • /
    • 2022
  • A nuclear power plant (NPP) piping is designed against low-frequency earthquakes. However, earthquakes that can occur at NPP sites in the eastern part of the United States, northern Europe, and Korea are high-frequency earthquakes. Therefore, this study conducts bi-directional shaking table tests on actual-scale NPP piping and studies the response characteristics of low- and high-frequency earthquake motions. Such response characteristics are analyzed by comparing several responses that occur in the piping. Also, based on the test results, a piping numerical analysis model is developed and validated. The piping seismic performance under high-frequency earthquakes is derived. Consequently, the high-frequency excitation caused a large amplification in the measured peak acceleration responses compared to the low-frequency excitation. Conversely, concerning relative displacements, strains, and normal stresses, low-frequency excitation responses were larger than high-frequency excitation responses. Main peak relative displacements and peak normal stresses were 60%-69% and 24%-49% smaller in the high-frequency earthquake response than the low-frequency earthquake response. This phenomenon was noticeable when the earthquake motion intensity was large. The piping numerical model simulated the main natural frequencies and relative displacement responses well. Finally, for the stress limit state, the seismic performance for high-frequency earthquakes was about 2.7 times greater than for low-frequency earthquakes.

Seismic response analysis of buried oil and gas pipelines-soil coupled system under longitudinal multi-point excitation

  • Jianbo Dai;Zewen Zhao;Jing Ma;Zhaocheng Wang;Xiangxiang Ma
    • Earthquakes and Structures
    • /
    • 제26권3호
    • /
    • pp.239-249
    • /
    • 2024
  • A new layered shear continuum model box was developed to address the dynamic response issues of buried oil and gas pipelines under multi-point excitation. Vibration table tests were conducted to investigate the seismic response of buried pipelines and the surrounding soil under longitudinal multi-point excitation. A nonlinear model of the pipeline-soil interaction was established using ABAQUS finite element software for simulation and analysis. The seismic response characteristics of the pipeline and soil under longitudinal multi-point excitation were clarified through vibration table tests and simulation. The results showed good consistency between the simulation and tests. The acceleration of the soil and pipeline exhibited amplification effects at loading levels of 0.1 g and 0.2 g, which significantly reduced at loading levels of 0.4 g and 0.62 g. The peak acceleration increased with increasing loading levels, and the peak frequency was in the low-frequency range of 0 Hz to 10 Hz. The amplitude in the frequency range of 10 Hz to 50 Hz showed a significant decreasing trend. The displacement peak curve of the soil increased with the loading level, and the nonlinearity of the soil resulted in a slower growth rate of displacement. The strain curve of the pipeline exhibited a parabolic shape, with the strain in the middle of the pipeline about 3 to 3.5 times larger than that on both sides. This study provides an effective theoretical basis and test basis for improving the seismic resistance of buried oil and gas pipelines.

제동 장치 최적 설계 모듈 개발 (Development of the Optimization Design Module of a Brake System)

  • 정성필;박태원
    • 한국자동차공학회논문집
    • /
    • 제16권3호
    • /
    • pp.166-171
    • /
    • 2008
  • In this paper, the optimization design module for the brake system of a vehicle is developed. As using this module, design variables, that minimize an object function and satisfy nonlinear constraint conditions, can be found easily. Before an optimization is operated, Plackett-Burman design, one of the factorial design methods, is used to choose the design variables which affect a response function significantly. Using the response surface analysis, second order recursive model function, which informs a relation between design variables and response function, is estimated. In order to verify the reliability of the model function, analysis of variances(ANOVA) table is used. The value of design variables which minimize the model function and satisfy the constraint conditions is predicted through Sequential Quadratic-Programming (SQP) method. As applying the above procedure to a real vehicle simulation model and comparing the values of object functions of a current and optimized system, the optimization results are verified.

Experimental study on tuned liquid damper performance in reducing the seismic response of structures including soil-structure interaction effect

  • Lou, Menglin;Zong, Gang;Niu, Weixin;Chen, Genda;Cheng, Franklin Y.
    • Structural Engineering and Mechanics
    • /
    • 제24권3호
    • /
    • pp.275-290
    • /
    • 2006
  • In this paper, the performance of a tuned liquid damper (TLD) in suppressing the seismic response of buildings is investigated with shake table testing of a four-story steel frame model that rests on pile foundation. The model tests were performed in three phases with the steel frame structure alone, the soil and pile foundation system, and the soil-foundation-structure system, respectively. The test results from different phases were compared to study the effect of soil-structure interaction on the efficiency of a TLD in reducing the peak response of the structure. The influence of a TLD on the dynamic response of the pile foundation was investigated as well. Three types of earthquake excitations were considered with different frequency characteristics. Test results indicated that TLD can suppress the peak response of the structure up to 20% regardless of the presence of soils. TLD is also effective in reducing the dynamic responses of pile foundation.

Seismic response of combined retaining structure with inclined rock slope

  • Yu-liang, Lin;Jie, Jin;Zhi-hao, Jiang;Wei, Liu;Hai-dong, Liu;Rou-feng, Li;Xiang, Liu
    • Structural Engineering and Mechanics
    • /
    • 제84권5호
    • /
    • pp.591-604
    • /
    • 2022
  • A gravity wall combined with an anchoring lattice frame (a combined retaining structure) is adopted at a typical engineering site at Dali-Ruili Railway Line China. Where, the combined retaining structure supports a soil deposit covering on different inclined rock slopes. With an aim to investigate and compare the effects of inclined rock slopes on the response of combined retaining structure under seismic excitation, three groups of shaking table tests are conducted. The rock slopes are shaped as planar surfaces inclined at angles of 20°, 30°, and 40° with the horizontal, respectively. The shaking table tests are supplemented by dynamic numerical simulations. The results regarding the horizontal acceleration response, vertical acceleration response, permanent displacement mode, and axial anchor force are comparatively examined. The acceleration response is more susceptible to outer structural profile of combined retaining structure than to inclined angle of rock slope. The permanent displacement decreases when the inclined angle of the rock slope increases within a range of 20°-40°. A critical inclined angle of rock slope exists within a range of 20°-40°, and induces the largest axial anchor force in the combined retaining structure.

장주기 지진동을 고려한 건축물 및 비구조요소의 가속도 응답 증폭비 (A Study on the Acceleration Response Amplification Ratio of Buildings and Non-structural Components Considering Long-Period Ground Motions)

  • 오상훈;김주찬
    • 한국지진공학회논문집
    • /
    • 제27권1호
    • /
    • pp.1-12
    • /
    • 2023
  • Structures of high-rise buildings are less prone to earthquake damage. This is because the response acceleration of high-rise buildings appears to be small by generally occurring short-period ground motions. However, due to the increased construction volume of high-rise buildings and concerns about large earthquakes, long-period ground motions have begun to be recognized as a risk factor for high-rise buildings. Ground motion observed on each floor of the building is affected by the eigenmode of the building because the ground motion input to the building is amplified in the frequency range corresponding to the building's natural frequency. In addition, long-period components of ground motion are more easily transmitted to the floor or attached components of the building than short-period components. As such, high-rise buildings and non-structural components pose concerns about long-period ground motion. However, the criteria (ASCE 7-22) underestimate the acceleration response of buildings and non-structural components caused by long-period ground motion. Therefore, the characteristics of buildings' acceleration response amplification ratio and non-structural components were reviewed in this study through shake table tests considering long-period ground motions.