• Title/Summary/Keyword: Response surface design

Search Result 1,814, Processing Time 0.041 seconds

Forming Process Design of Fuel Injector Housing by Response Surface Method (반응표면분석법을 이용한 연료분사하우징의 성형공정설계)

  • Park K. H.;Yeo H. T.;Hur K. D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.311-314
    • /
    • 2004
  • The housing of the fuel injector supports the rod, the niddle valve and the solenoid. Based on the procedure of process design, in this paper, the forming operation is designed by the rigid-plastic finite element method. The metal flow during the forming of the fuel injector housing is axisymmetric until the final forming process. The response surface method has been performed to reduce the under-fill and the maximum effective strain. From the results of RSM, the second order regression model of equation is calculated by the least square method and used to determine the optimal values of design variables by simultaneously considering the responses. It is noted that upper under-fill is affected by the design variables of the $2^{nd}$ forming process and lower under-fill is affected by the design variables of the 1st forming process.

  • PDF

Shape Optimization of Sedimentation Tank Using Response Surface Method (반응면기법을 이용한 침전조의 형상최적설계)

  • Kim, Hong-Min;Choi, Seung-Man;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.6 s.27
    • /
    • pp.55-61
    • /
    • 2004
  • A numerical procedure for optimizing the shape of three-dimensional sedimentation tank is presented to maximize its sedimentation efficiency. The response surface based optimization is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis for multi-phase flow. Standard $k-{\epsilon}$ model is used as a turbulence closure. Three design variables such as, tank height to center feed wall diameter ratio, blockage ratio of center feed wall and angle of distributor are chosen as design variables. Sedimentation efficiency is defined as an objective function. Full-factorial method is used to determine the training points as a means of design of experiment. Sensitivity of each design variable on the objective function has been evaluated. And, optimal values of the design variables have been obtained.

AERODYNAMIC DESIGN OPTIMIZATION OF ROTOR BLADE OA AIRFOILS (로터 블레이드 OA 익형의 공력 최적 설계)

  • Sa, J.H.;Park, S.H.;Kim, C.J.;Yun, C.Y.;Kim, S.H.;Kim, S.;Yu, Y.H.
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.25-31
    • /
    • 2009
  • Numerical optimization of rotor blade airfoils is performed with a response surface method for helicopter rotor. For the baseline airfoils, OA 312, OA 309, and OA 407 airfoils are selected and optimized to improve aerodynamic performance. Aerodynamic coefficients required for the response surface method are obtained by using Navier-Stokes solver with k-$\omega$ Shear Stress Transport turbulence model. An optimized airfoil has increased drag divergence Mach number. The present design optimization method can generate an optimized airfoil with multiple design constraints, whenever it is designed from different baseline airfoils at the same design condition.

Aerodynamic Design Optimization of A Transonic Axial Compressor Rotor with Readjustment of A Design Point (설계유량을 고려한 천음속 축류압축기 동익의 삼차원 형상최적설계)

  • Ko, Woo-Sik;Kim, Kwang-Yong;Ko, Sung-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.639-645
    • /
    • 2003
  • Design optimization of a transonic compressor rotor (NASA rotor 37) using response surface method and three-dimensional Navier-Stokes analysis has been carried out in this work. Baldwin-Lomax turbulence model was used in the flow analysis. Two design variables were selected to optimize the stacking line of the blade, and mass flow was used as a design variable, as well, to obtain new design point at peak efficiency. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, adiabatic efficiency was successfully improved, and new design mass flow that is appropriate to an improved blade was obtained. Also, it is found that the design process provides reliable design of a turbomachinery blade with reasonable computing time.

  • PDF

Reliability Based Design Optimization for Section Shape of Simple Structures (빔 단면형상에 대한 구조물 신뢰성 최적설계)

  • 임준수;임홍재;이상범;허승진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.672-676
    • /
    • 2002
  • In this paper, a reliability-based design optimization method, which enables the determination of optimum design that incorporate confidence range for structures, is studied. Response surface method and Monte Carlo simulation are utilized to determine limit state function. The proposed method is applied to the I-type steel structure for reliability based optimal design.

  • PDF

Optimization Using 33 Full-Factorial Design for Crude Biosurfactant Activity from Bacillus pumilus IJ-1 in Submerged Fermentation

  • Kim, Byung Soo;Kim, Ji Yeon
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.1
    • /
    • pp.48-56
    • /
    • 2020
  • This study aimed to optimize the culture conditions to improve the crude biosurfactant activity of Bacillus pumilus IJ-1, using a 33 full-factorial design of response surface methodology (RSM). It was found that submerged fermentation of B. pumilus improved the activity of the crude biosurfactant. The factors selected for optimization were NaCl concentration, temperature, and tryptone concentration. Response surface analysis revealed that the fitted quadratic model was statistically significant and produced an adequate R2 value (0.9898) and a low probability value (<0.0001). The optimum level for each factor was found to be 0.567% (w/v) NaCl, 21.851℃ and 0.765% (w/v) tryptone, respectively. Crude biosurfactant activity was found to be most affected by tryptone concentration; then temperature, and finally NaCl concentration. Our results may potentially facilitate large-scale biosurfactant production from B. pumilus IJ-1.

Optimization of Sonocatalytic Orange II Degradation on MoS2 Nanoparticles using Response Surface Methodology

  • Jiulong Li;Jeong Won Ko;Weon Bae Ko
    • Elastomers and Composites
    • /
    • v.58 no.4
    • /
    • pp.191-200
    • /
    • 2023
  • In this study, MoS2 nanoparticles were synthesized and analyzed through powder X-ray diffraction, Raman, ultraviolet-visible, and X-ray photoelectron spectroscopies. The surface morphologies of the as-synthesized MoS2 nanoparticles were investigated through scanning and transmission electron microscopies. The sonocatalytic activity of the MoS2 nanoparticles toward Orange II removal was evaluated by utilizing a Box-Behnken design for response surface methodology in the experimental design. The sonocatalyst dosage, Orange II dye concentration, and ultrasound treatment time were optimized to be 0.49 g/L, 5 mg/L, and 150 min, respectively. The maximum efficiency of Orange II degradation on MoS2 nanoparticles was achieved, with a final average value of 82.93%. Further, the results of a kinetics study on sonocatalytic Orange II degradation demonstrated that the process fits well with a pseudo-first-order kinetic model.

Experimental analysis and modeling of steel fiber reinforced SCC using central composite design

  • Kandasamy, S.;Akila, P.
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.215-229
    • /
    • 2015
  • The emerging technology of self compacting concrete, fiber reinforcement together reduces vibration and substitute conventional reinforcement which help in improving the economic efficiency of the construction. The objective of this work is to find the regression model to determine the response surface of mix proportioning Steel Fiber Reinforced Self Compacting Concrete (SFSCC) using statistical investigation. A total of 30 mixtures were designed and analyzed based on Design of Experiment (DOE). The fresh properties of SCC and mechanical properties of concrete were studied using Response Surface Methodology (RSM). The results were analyzed by limited proportion of fly ash, fiber, volume combination ratio of two steel fibers with aspect ratio of 50/35: 60/30 and super plasticizer (SP) dosage. The center composite designs (CCD) have selected to produce the response in quadratic equation. The model responses included in the primary stage were flowing ability, filling ability, passing ability and segregation index whereas in harden stage of concrete, compressive strength, split tensile strength and flexural strength at 28 days were tested. In this paper, the regression model and the response surface plots have been discussed, and optimal results were found for all the responses.

A Study on Wear loss of Motorcycle Brake Disk by Response Surface Method (반응 표면법을 이용한 이륜자동차 브레이크 디스크 마멸량에 관한 연구)

  • Jeon, H.Y.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.44-49
    • /
    • 2008
  • In this research, I would like to choose sliding distance and ventilated hole number which affect to the amount of wear of disk and pad as experiment conditions of 'the amount of wear' through wear test of motorcycle brake disk. Also, I analyze the amount of wear according to the variation of coefficient of friction by using design of experiment that is being widely used in diverse areas. With the tests of least, I present the correlation of each experiment condition. Therefore, I analyzed the variation of the amount of wear of disk and pad according to test factors such as ventilated hole number, applied load, sliding speed, and sliding distance in wear test of motorcycle brake disk by applying the design of experiment. Also, I analyzed quantitatively the influence of test factors through Taguchi Robust experimental design, response surface and examined the most suitable level and estimation of the amount of wear of disk. From these, I reached the following conclusions. response surface design, mathematical model was constructed about amount of wear of disk and pad. The amount of wear that decrease according to increase of ventilated hole number, and it's increase according to Increase of applied load, sliding speed, and sliding distance.

  • PDF

Optimization of Culture Media for Enhanced Chitinase Production from a Novel Strain of Stenotrophomonas maltophilia Using Response Surface Methodology

  • Khan, Minhaj Ahmad;Hamid, Rifat;Ahmad, Mahboob;Abdin, M.Z.;Javed, Saleem
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1597-1602
    • /
    • 2010
  • Chitinase is one of the most important mycolytic enzymes with industrial significance. This enzyme is produced by a number of organisms including bacteria. In this study, we describe the optimization of media components with increased production of chitinase for the selected bacteria, Stenotrophomonas maltophilia, isolated from soil. Different components of the defined media responsible for influencing chitinase secretion by the bacterial isolate were screened using Plackett-Burman experimental design and were further optimized by Box-Behnken factorial design of response surface methodology in liquid culture. Maximum chitinase production was predicted in medium containing 4.94 g/l chitin, 5.56 g/l maltose, 0.62 g/l yeast extract, 1.33 g/l $KH_2PO_4$, and 0.65 g/l $MgSO_4{\cdot}7H_2O$ using response surface plots and the point prediction tool of the DESIGN EXPERT 7.1.6 (Stat-Ease, USA) software.