• Title/Summary/Keyword: Response surface

Search Result 4,788, Processing Time 0.032 seconds

Forming Process Design of Fuel Injector Housing by Response Surface Method (반응표면분석법을 이용한 연료분사하우징의 성형공정설계)

  • Park K. H.;Yeo H. T.;Hur K. D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.311-314
    • /
    • 2004
  • The housing of the fuel injector supports the rod, the niddle valve and the solenoid. Based on the procedure of process design, in this paper, the forming operation is designed by the rigid-plastic finite element method. The metal flow during the forming of the fuel injector housing is axisymmetric until the final forming process. The response surface method has been performed to reduce the under-fill and the maximum effective strain. From the results of RSM, the second order regression model of equation is calculated by the least square method and used to determine the optimal values of design variables by simultaneously considering the responses. It is noted that upper under-fill is affected by the design variables of the $2^{nd}$ forming process and lower under-fill is affected by the design variables of the 1st forming process.

  • PDF

Optimization on Organoleptic Properties of Mushroom (Agaricus bisporus) Pickles using Response Surface Methodology (반응표면법을 이용한 양송이버섯 피클의 관능적 특성 최적화)

  • 김옥선;주나미
    • Korean journal of food and cookery science
    • /
    • v.20 no.2
    • /
    • pp.158-163
    • /
    • 2004
  • The purpose of this study was to determine the organoleptic properties of mushroom pickles made at various compounding ratios according to central composite design for optimum organoleptic properties. In this study, various kinds of mushroom pickle were made at different compounding ratios of vinegar, sugar and salt-critical ingredients of the pickle recipe and the products were presented to an expert panel, who graded the subjects in 7 degrees for 5 items: color, flavor, hardness, taste and overall quality. As a result of sensory quality, mushroom pickles with 300g of vinegar, 150g of sugar and 60g of salt achieved the highest grade. Meanwhile, the results of Response Surface Methodology were different from the sensory quality results, showing that the optimum mixing conditions for overall organoleptic properties of mushroom pickle were 279.58g of vinegar, 179.34g of sugar and 59.09g of salt. (Ed- based on this conflict in results, I suggest that you make a final recommendation, of either the first, the second, or perhaps an intermediate, ratio)

NUMERICAL APPROXIMATION OF VEHICLE JOINT STIFFNESS BY USING RESPONSE SURFACE METHOD

  • Lee, S.B.;Park, J.R.;Yim, H.J.
    • International Journal of Automotive Technology
    • /
    • v.3 no.3
    • /
    • pp.117-122
    • /
    • 2002
  • Joint stiffness can affect the vibration characteristics of car body structures. Therefore, it should be included in vehicle system model. In this paper, a numerical approximation of joint stiffness is presented considering joint flexibility of thin walled beam-jointed structures. Using the proposed method, it is possible to optimize joint structures considering the change of section shapes in vehicle structures. The numerical approximation of joint stiffness is derived using the response surface method in terms of beam section properties. The study shows that joint stiffnesses can be effectively determined in designing vehicle structures.

Optimization of Jelly Preparation from Nopal by Response Surface Methodology (반응표면분석법을 이용한 백년초젤리 제조의 최적화)

  • Jung, Hyeun-A;Joo, Na-Mi
    • Journal of the Korean Society of Food Culture
    • /
    • v.20 no.6
    • /
    • pp.695-702
    • /
    • 2005
  • To determine the optimum mixing conditions of nopal jelly, samples were prepared with various compounding ratios of gelatin(16, 18, 20, 22 and 24g), sucrose(100, 120, 140, 160 and 180g), Citric acid(2, 3, 4, 5 and 6) using a central composite design. Physical and sensory evaluations were performed and considered using a response surface methodology. The optimum mixing rates which meet sensory items is gelatin 20.19g, sucrose 141.52g and citric acid 4.04g.

Design of An Axial Flow Fan with Shape Optimization (형상최적화를 통한 축류송풍기의 설계)

  • Seo, Seoung-Jin;Choi, Seung-Man;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.578-582
    • /
    • 2004
  • This paper presents the response surface optimization method using three-dimensional Navier-Stokes Analysis to optimize the shape of a axial flow fan. Reynolds-averaged Navier-Stokes equations with k-$\epsilon$ turbulence model are discretized with finite volume approximations. Regression analysis is used for generating response surface, and it is validated by ANOVA. Five geometric variables, i.e., distribution of sweep angle at mean and tip, lean angle at mean and tip, and spanwise location of mean were employed to optimize the efficiency. The computational results are compared with experiment data. As a main result of the optimization, the efficiency was successfully improved.

  • PDF

Shape Optimization of Sedimentation Tank Using Response Surface Method (반응면기법을 이용한 침전조의 형상최적설계)

  • Kim, Hong-Min;Choi, Seung-Man;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.6 s.27
    • /
    • pp.55-61
    • /
    • 2004
  • A numerical procedure for optimizing the shape of three-dimensional sedimentation tank is presented to maximize its sedimentation efficiency. The response surface based optimization is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis for multi-phase flow. Standard $k-{\epsilon}$ model is used as a turbulence closure. Three design variables such as, tank height to center feed wall diameter ratio, blockage ratio of center feed wall and angle of distributor are chosen as design variables. Sedimentation efficiency is defined as an objective function. Full-factorial method is used to determine the training points as a means of design of experiment. Sensitivity of each design variable on the objective function has been evaluated. And, optimal values of the design variables have been obtained.

Optimizing Oily Wastewater Treatment Via Wet Peroxide Oxidation Using Response Surface Methodology

  • Shi, Jianzhong;Wang, Xiuqing;Wang, Xiaoyin
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.1
    • /
    • pp.80-84
    • /
    • 2014
  • The process of petroleum involves in a large amount of oily wastewater that contains high levels of chemical oxygen demand (COD) and toxic compounds. So they must be treated before their discharge into the receptor medium. In this paper, wet peroxide oxidation (WPO) was adopted to treat the oily wastewater. Central composite design, an experimental design for response surface methodology (RSM), was used to create a set of 31 experimental runs needed for optimizing of the operating conditions. Quadratic regression models with estimated coefficients were developed to describe the COD removals. The experimental results show that WPO could effectively reduce COD by 96.8% at the optimum conditions of temperature $290^{\circ}C$, $H_2O_2$ excess (HE) 0.8, the initial concentration of oily wastewater 3855 mg/L and reaction time 9 min. RSM could be effectively adopted to optimize the operating multifactors in complex WPO process.

Analysis of Siloxane Adsorption Characteristics Using Response Surface Methodology

  • Park, Jin-Kyu;Lee, Gyeung-Mi;Lee, Chae-Young;Hur, Kwang-Beom;Lee, Nam-Hoon
    • Environmental Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.117-122
    • /
    • 2012
  • A central composite design and response surface methodology were applied to investigate the optimum conditions for maximum adsorption capacity in activated alumina as an adsorbent. The optimized conditions were determined for adsorption capacity using variables of flow rate and temperature. It was found that flow rate and temperature greatly influenced the adsorption capacity, as determined by analysis of variance analysis of these variables. Statistical checks indicated that second order polynomial equations were adequate for representing the experimental values. The optimum conditions for adsorption capacity were $0^{\circ}C$ and 2,718 mL/min, with the estimated maximum adsorption capacity of 17.82%. The experimental adsorption capacity was 17.75% under these optimum conditions, which was in agreement with the predicted value of 17.82%.

Design And Optimization Of Actuator For Micro Optical Disk Drive Using Response Surface Methodology (반응표면법을 이용한 초소형 광디스크 드라이브 구동기의 최적화 및 디자인)

  • 우기석;이동주;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.755-761
    • /
    • 2003
  • Recently, the development of mobile devices demands information storage systems to use micro drive devices and cheap media. These should have several characteristics, for example, the subminiature of size, the robustness of shock, the minimum of cost and power consumption, and the removability of multiple applications. A conventional optical disk drive is more suitable for these specifications than the others. The optical storage system of the new generation to use a blue laser and a high numerical aperture (NA) is the perfect candidate for micro optical disk drives. In this paper, the micro actuator that can be applied to a micro optical disk drive is designed by response surface methodology to use a structural analysis and an electro-magnetic analysis. Based on above results, the coarse actuator and fine actuator are designed and improved from the point of view of the size and the power. Consequently, the designs of a micro actuator are proposed through these courses.

  • PDF

Response Surface Methodology in Development of Oyster Hydrolysate

  • Cha, Yong-Jun;Kim, Eun-Jeong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.427-433
    • /
    • 1995
  • The optimal condition for hydrolysis of oyster was evaluated with proteases using response surface methodology(RSM). Among 11 commerical proteases, APLTM 440 was selected as the suitable protease for producing oyster hydrolysate on the basis of cost per unit enzyme activity. The effect of autolysis on degree of hydrolysis in oyster was negligible comparing to that of APL 440 protease treatment. From RSM and ridge analysis, the conditions favoring the highest degree of hydrolysis were pH 9.95, 61.1$^{\circ}C$, 2.64 hr reaction time, 49.2% substrate, and 0.35% enzyme/substrate ratio. Oyster hydrolysate prepared under optimal conditions shwoed virtually 51.98% of hydrolysis.

  • PDF