• Title/Summary/Keyword: Response surface

Search Result 4,788, Processing Time 0.025 seconds

Quantification of nonlinear seismic response of rectangular liquid tank

  • Nayak, Santosh Kumar;Biswal, Kishore Chandra
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.599-622
    • /
    • 2013
  • Seismic response of two dimensional liquid tanks is numerically simulated using fully nonlinear velocity potential theory. Galerkin-weighted-residual based finite element method is used for solving the governing Laplace equation with fully nonlinear free surface boundary conditions and also for velocity recovery. Based on mixed Eulerian-Lagrangian (MEL) method, fourth order explicit Runge-Kutta scheme is used for time integration of free surface boundary conditions. A cubic-spline fitted regridding technique is used at every time step to eliminate possible numerical instabilities on account of Lagrangian node induced mesh distortion. An artificial surface damping term is used which mimics the viscosity induced damping and brings in numerical stability. Four earthquake motions have been suitably selected to study the effect of frequency content on the dynamic response of tank-liquid system. The nonlinear seismic response vis-a-vis linear response of rectangular liquid tank has been studied. The impulsive and convective components of hydrodynamic forces, e.g., base shear, overturning base moment and pressure distribution on tank-wall are quantified. It is observed that the convective response of tank-liquid system is very much sensitive to the frequency content of the ground motion. Such sensitivity is more pronounced in shallow tanks.

An Application of Response Surface Experiments to Control the Quality of Industrial Products : Model Fitting and Prediction of Responses (공업제품의 질을 관리하기 위한 반응표면 실험의 응용 - 통계적 모형 적합과 반응의 예측을 중심으로 -)

  • Park, Seong-Hyeon
    • Journal of Korean Society for Quality Management
    • /
    • v.6 no.1
    • /
    • pp.14-17
    • /
    • 1978
  • In response surface experiments, a polynomial regression model is often used to fit the response surface to explore the functional relationship between a response variable and several independent variables, and to determine the optimum operating conditions, which would be desirable to control the quality of industrial products. The problem considered in this paper is that of selecting subsets of polynomial terms from a given polynomial model so as to achieve "improved" response surfaces in estimation of the response. Such improvement in fitting the response surfaces would be very helpful to determine the optimum operating conditions and to explore the functional relationship with better precision. A criterion is proposed for selection of polynomial terms and illustrated with an industrial example.

  • PDF

Design Optimization of A Multi-Blade Centrifugal Fan with Navier-Stokes Analysis and Response Surface Method (삼차원 Navier-Stokes 해석과 반응면기법을 이용한 원심다익송풍기의 최적설계)

  • Seo, Seoung-Jin;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1457-1463
    • /
    • 2003
  • In this paper, the response surface method using three-dimensional Navier-Stokes analysis to optimize the shape of a multi-blade centrifugal fan, is described. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard k - c turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in this centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.

Aerodynamic Design of Helicopter Rotor Airfoil in Forward Flight Using Response Surface Method (반응표면법을 이용한 전진비행하는 헬리콥터 로터 에어포일의 공력설계)

  • Sun, Hyo-Sung;Lee, Soo-Gab
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.13-18
    • /
    • 2004
  • This paper describes an efficient and robust optimization method for helicopter rotor airfoil design in forward flight. Navier-Stokes analysis was employed to compute the dynamic response of an airfoil, which simulates the unsteady rotor flow-field in forward flight. The optimization system consists of two categories; Response Surface Method to construct the response surface model based on D-optimal 3-level factorial design, and Genetic Algorithm to obtain the optimum solution of a defined objective function including penalty terms of constraints. The influence of design variables and their interactions on the aerodynamic performance was examined through the optimization process.

Optimization of Tri-enzyme Extraction Procedures for the Microbiological Assay of Folate in Red Kidney Bean and Roasted Peanut Using Response Surface Methodology

  • Choi, Young-Min;Eitenmiller, Ronald R.;Kim, Seon-Hee;Lee, Jun-Soo
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.31-35
    • /
    • 2009
  • Total folate content was determined by microbiological assay using Lactobacillus casei spp. rhamnosis (ATCC 7469) with a 96-well microplate technique. Using roasted peanut and red kidney beans as representative legume samples, response surface methodology (RSM) was supplied to optimize the trienzyme procedures for the determination of folate in legumes. After response surface regression (RSREG), the second-order polynomial equation was fitted to the experimental data. Ridge analysis showed that the optimal digestion times were <2 hr for $Pronase^{(R)}$ and $\alpha$-amylase, and <5 hr for conjugase to obtain maximal folate values for legume samples. This study confirms that established digestion times for cereal products (AOAC Method 2004.05) of 3 for protease and 2 hr for $\alpha$-amylase are applicable to legumes. Conjugase treatment can be reduced to 5 from 16 hr and the conjugase level to 5 from 20 mg per sample, providing significant cost saving.

Experimental analysis and modeling of steel fiber reinforced SCC using central composite design

  • Kandasamy, S.;Akila, P.
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.215-229
    • /
    • 2015
  • The emerging technology of self compacting concrete, fiber reinforcement together reduces vibration and substitute conventional reinforcement which help in improving the economic efficiency of the construction. The objective of this work is to find the regression model to determine the response surface of mix proportioning Steel Fiber Reinforced Self Compacting Concrete (SFSCC) using statistical investigation. A total of 30 mixtures were designed and analyzed based on Design of Experiment (DOE). The fresh properties of SCC and mechanical properties of concrete were studied using Response Surface Methodology (RSM). The results were analyzed by limited proportion of fly ash, fiber, volume combination ratio of two steel fibers with aspect ratio of 50/35: 60/30 and super plasticizer (SP) dosage. The center composite designs (CCD) have selected to produce the response in quadratic equation. The model responses included in the primary stage were flowing ability, filling ability, passing ability and segregation index whereas in harden stage of concrete, compressive strength, split tensile strength and flexural strength at 28 days were tested. In this paper, the regression model and the response surface plots have been discussed, and optimal results were found for all the responses.

Modeling of Sand Blasting Process for Anti-Glare Surface Treatment of Display Glass (디스플레이 유리의 눈부심 방지 표면처리를 위한 샌드 블래스팅 공정의 모형화)

  • Min, Chul Hong;Kim, Tae Seon
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.5
    • /
    • pp.303-308
    • /
    • 2018
  • Currently hydrofluoric acid (HF) based glass etch method is widely used for anti-glare (AG) surface treatment since it can effectively alleviate the specular reflection problem with relatively low processing cost. However, due to the environmental regulation and safety problem, it is essential to develop alternative technology to replace this method. For this, in this paper, we propose sand blasting based AG surface treatment method for display glass. To characterize the sand blasting process, surface roughness, haze, surface durability, and flatness are considered as process outputs and central composite design (CCD) method and response surface model (RSM) method are applied to model each process output. Models for surface roughness and haze showed 96.44% and 97.24% of R-squared values, respectively and they can be applied to optimize AG surface treatment process for various haze level requirements of display industries.

A Study on the Optimization of Cylindrical Lapping Process for Engineering Fine-Ceramics $(Al_{2}O_{3})$ by Response Surface Methodology (반응표면분석법에 의한 화인세라믹스$(Al_{2}O_{3})$ 원통래핑의 최적화에 관한 연구)

  • 김정두;최민석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.856-865
    • /
    • 1994
  • Cylindrical fine-ceramics, $Al_{2}O_{3}$, was lapped on its outer surface by vibrational lapping unit manufactured in the laboratory. Cylindrical lapping of fine-ceramics is necessarily be characterized and optimized because its process as other finishing methods is time-spending and, so, inefficient one, and because it is very complicated and random process affected by numerous factors in itself and in its environment. In this study, an efficient experimental approach, experimental design method, was used to analyze characteristics of the cylindrical lapping of fine-ceramics, $Al_{2}O_{3}$, and response surface methodology(RSM) to find out the optimal variables combination for the maximum improvement of surface roughness($R_a$). From the final surface roughness point of view in the given lapping conditions, a stationary point or optimal lapping conditions as well as the possible maximum improvement of surface roughness($R_a$) was predicted.

A Study on the Surface Roughness of Aluminum Alloy by Response Surface Nethod (응답표면법에 의한 알루미늄합금의 가공면 거칠기에 관한 연구)

  • Gu, Ja-Sung;Kim, Won-Il;Lee, Yun-Kyung;Wang, Duk-Hyun;Park, Ji-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.1
    • /
    • pp.31-36
    • /
    • 2005
  • The purpose of this experimental study is to gain equations for the prediction of surface roughness depending on the three major parameters(the cutting speed, the feed rate and the nose radius). It is the merit of Response Surface Methodology that the test time is reduced to minimum size and accurate analysis can be done. On this study, first, made specimen, Al 5052 BE material which is widely used in school and cut the specimen with coated tungsten carbide tools, by varying the cutting conditions, such as the cutting speed, the feed rate and the nose radius. In conclusion, the surface roughness was most greatly influenced by the feed rate. And Surface Roughness equation gained by experiment is as followed $$R=58.2\;v^{-0.22}f^{1.7}r^{-0.66}$$.

  • PDF

Development of Probiotic Candies with Optimal Viability by Using Response Surface Methodology and Sequential Quadratic Programming

  • Chen, Kun-Nan;Chen, Ming-Ju;Shiu, Jia-Shian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.6
    • /
    • pp.896-902
    • /
    • 2008
  • The objective of this research was to create a new probiotic candy with good flavor and healthy benefits by using the response surface method and a sequential quadratic programming technique. The endpoint was to increase the varieties of dairy products and enhance their market values. In this study, milk was mixed with yogurt cultures (Lactobacillus bulgaricus, Streptococcus thermophilus) and probiotics (L. paracasei, Bifidobacterium longum) and incubated at $37^{\circ}C$ for 20 h. The samples were blended with lyoprotectants (galactose, skim milk powder and sucrose), freeze dried and then mixed with sweeteners (lactose and xylitol) to improve the texture for forming tablets. The processing conditions were optimized in two steps: the first step constructed a surface model using response surface methodology; the second step optimized the model with a sequential quadratic programming procedure. Results indicated that skim milk inoculated with L. delbrueckii subsp. Bulgaricus, S. thermophilus, L. paracasei subsp. paracasei and B. longum and blended with 6.9% of galactose, 7.0% of sucrose and 8.0% of skim milk powder would produce a new probiotic candy with the highest viability of probiotics and good flavor. A relatively higher survival of probiotics can be achieved by placing the probiotic candy product in a glass bottle with deoxidant and desiccant at $4^{\circ}C$. These probiotic counts remained at 106-108 CFU/g after being stored for two months.