• Title/Summary/Keyword: Response regulator

Search Result 390, Processing Time 0.026 seconds

The role of necroptosis in the treatment of diseases

  • Cho, Young Sik
    • BMB Reports
    • /
    • v.51 no.5
    • /
    • pp.219-224
    • /
    • 2018
  • Necroptosis is an emerging form of programmed cell death occurring via active and well-regulated necrosis, distinct from apoptosis morphologically, and biochemically. Necroptosis is mainly unmasked when apoptosis is compromised in response to tumor necrosis factor alpha. Unlike apoptotic cells, which are cleared by macrophages or neighboring cells, necrotic cells release danger signals, triggering inflammation, and exacerbating tissue damage. Evidence increasingly suggests that programmed necrosis is not only associated with pathophysiology of disease, but also induces innate immune response to viral infection. Therefore, necroptotic cell death plays both physiological and pathological roles. Physiologically, necroptosis induce an innate immune response as well as premature assembly of viral particles in cells infected with virus that abrogates host apoptotic machinery. On the other hand, necroptosis per se is detrimental, causing various diseases such as sepsis, neurodegenerative diseases and ischemic reperfusion injury. This review discusses the signaling pathways leading to necroptosis, associated necroptotic proteins with target-specific inhibitors and diseases involved. Several studies currently focus on protective approaches to inhibiting necroptotic cell death. In cancer biology, however, anticancer drug resistance severely hampers the efficacy of chemotherapy based on apoptosis. Pharmacological switch of cell death finds therapeutic application in drug- resistant cancers. Therefore, the possible clinical role of necroptosis in cancer control will be discussed in brief.

IL-2-enhanced NK Cell Cytotoxicity is Regulated by Adiponectin from Hypothalamo-pituitary-adrenal Axis (Adiponectin에 의한 IL-2 증가 자연살해세포 독성의 조절)

  • Kim, Keun-Young;Yang, Young
    • IMMUNE NETWORK
    • /
    • v.6 no.1
    • /
    • pp.6-12
    • /
    • 2006
  • Background: The Hypothalamo-Pituitary-Adrenal (HPA) axis is an important regulator for the body's stress response. As a primary stress responsive system, HPA-axis secretes various neurotransmitters, hormones, and cytokines, which regulates the immune system. Natural killer (NK) cell which is plays an important role in the innate immune response, is specially decreased their numbers and loose cytolytic activity in response to stress. However, the effect of HPA-axis secreted proteins on NK cell activity has not been defined. Herein, we studied the effect of adrenal secreted adiponectin on NK cell cytotoxicity. Adiponectin which is well-known metabolic control protein, plays important roles in various diseases, including hypertension, cardiovascular diseases, inflammatory disorders, and cancer. Methods: Signal sequence trap was used to find stress novel secretory protein from HP A-axis. Selected adiponectin was treated mouse mature primary NK cells and then examined the effect of adiponectin to NK cell cytotoxicity and cytokine expression level. Results: We found that adiponectin which is secreted from adrenal gland, suppress IL-2 induced NK cell cytotoxicity. And also investigated cytolytic cytokines are suppressed by adiponectin. Conclusion: These data suggest that adiponectin inhibites NK cell cytotoxicity via suppression of cytotoxicity related target gene.

Anti-inflammatory Effects of Metformin on Neuro-inflammation and NLRP3 Inflammasome Activation in BV-2 Microglial Cells

  • Ha, Ji-Sun;Yeom, Yun-Seon;Jang, Ju-Hun;Kim, Yong-Hee;Im, Ji In;Kim, In Sik;Yang, Seung-Ju
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.92-98
    • /
    • 2019
  • Metformin is a drug used for the treatment of diabetes and is associated with anti-inflammatory reaction, but the underlying mechanism is unclear. In this study, we investigated the effect of metformin on the inflammatory response in BV-2 microglial cells induced by lipopolysaccharide (LPS) and S100 calcium-binding protein A8 (S100A8). The results revealed that metformin significantly attenuated several inflammatory responses in BV-2 microglial cells, including the secretion of pro-inflammatory cytokines, such as tumor necrosis factor-${\alpha}$ and interleukin (IL)-6, involved in the activation of Beclin-1, a crucial regulator of autophagy. In addition, metformin inhibited the LPS-induced phosphorylation of ERK. Metformin also suppressed the activation of NOD-like receptor pyrin domain containing 3 inflammasomes composed of NLRP3, caspase-1, and apoptosis-associated speck like protein containing a caspase recruitment domain, which are involved in the innate immune response. Notably, metformin decreased the secretion of S100A8-induced IL-6 production. These findings suggest that metformin alleviates the neuroinflammatory response via autophagy activation.

A Marine Bacterium with Animal-Pathogen-Like Type III Secretion Elicits the Nonhost Hypersensitive Response in a Land Plant

  • Boyoung Lee;Jeong-Im Lee;Soon-Kyeong Kwon;Choong-Min Ryu;Jihyun F. Kim
    • The Plant Pathology Journal
    • /
    • v.39 no.6
    • /
    • pp.584-591
    • /
    • 2023
  • Active plant immune response involving programmed cell death called the hypersensitive response (HR) is elicited by microbial effectors delivered through the type III secretion system (T3SS). The marine bacterium Hahella chejuensis contains two T3SSs that are similar to those of animal pathogens, but it was able to elicit HR-like cell death in the land plant Nicotiana benthamiana. The cell death was comparable with the transcriptional patterns of H. chejuensis T3SS-1 genes, was mediated by SGT1, a general regulator of plant resistance, and was suppressed by AvrPto1, a type III-secreted effector of a plant pathogen that inhibits HR. Thus, type III-secreted effectors of a marine bacterium are capable of inducing the nonhost HR in a land plant it has never encountered before. This suggests that plants may have evolved to cope with a potential threat posed by alien pathogen effectors. Our work documents an exceptional case of nonhost HR and provides an expanded perspective for studying plant nonhost resistance.

TRAIP regulates Histone H2B monoubiquitination in DNA damage response pathways

  • YE GI HAN;MIYONG YUN;MINJI CHOI;SEOK-GEUN LEE;HONGTAE KIM
    • Oncology Letters
    • /
    • v.41 no.6
    • /
    • pp.3305-3312
    • /
    • 2019
  • Histone H2B monoubiquitination has been shown to play critical roles in diverse cellular processes including DNA damage response. Although recent data indicate that H2B monoubiquitination is strongly connected with tumor progression and regulation, the implications of this modification in lung adenocarcinoma are relatively unknown. In the present study, we demonstrated the clinical implication of H2B monoubiquitination and the potential role of tumor necrosis factor receptor-associated factor-interacting protein (TRAIP) in regulating its modification in lung adenocarcinoma. Immunohistochemical analysis showed that H2B monoubiquitination was significantly downregulated in 68 human lung adenocarcinoma patient samples compared to their normal adjacent tissues. Depletion of TRAIP by specific siRNA treatment markedly decreased ionizing radiation (IR)-induced H2B monoubiquitination. In addition, deletion mutants without RING domain or C-terminus of TRAIP diminished the ability to induce H2B monoubiquitination at lysine 120. Notably, the nuclear expression of TRAIP was positively related with H2B monoubiquitination levels in patients with lung adenocarcinoma. Furthermore, statistical analysis indicated that low levels of both TRAIP and H2B monoubiquitination, not each alone, in patients with lung adenocarcinoma were strongly correlated with poor survival. Taken together, these results suggest that TRAIP is a novel regulator of H2B monoubiquitination in DNA damage response and cancer development in lung adenocarcinoma.

Negative Role of wblA in Response to Oxidative Stress in Streptomyces coelicolor

  • Kim, Jin-Su;Lee, Han-Na;Kim, Pil;Lee, Heung-Shick;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.736-741
    • /
    • 2012
  • In this study, we analyzed the oxidative stress response of wblA ($\underline{w}$hi$\underline{B}$-$\underline{l}$ike gene $\underline{A}$, SCO3579), which was previously shown to be a global antibiotic down-regulator in Streptomyces coelicolor. Ever since a WblA ortholog named WhcA in Corynebacterium glutamicum was found to play a negative role in the oxidative stress response, S. coelicolor wblA has been proposed to have a similar effect. A wblA-deletion mutant exhibited a less sensitive response to oxidative stress induced by diamide present in solid plate culture. Using real-time RT-PCR analysis, we also compared the transcription levels of oxidative stress-related genes, including sodF, sodF2, sodN, trxB, and trxB2, between S. coelicolor wild type and a wblA-deletion mutant in the presence or absence of oxidative stress. Target genes were expressed higher in the wblA-deletion mutant compared with wild type, both in the absence and presence of oxidative stress. Moreover, expression of these target genes in S. coelicolor wild type was stimulated only in the presence of oxidative stress, suggesting that WblA plays a negative role in the oxidative stress response of S. coelicolor, similar to that of C. glutamicum WhcA, through the transcriptional regulation of oxidative stress-related genes.

Identification of Amino Acids Involved in the Sensory Function of the PrrB Histidine Kinase by Site-directed Mutagenesis (Site-directed mutagenesis에 의한 PrrB histidine kinase의 신호인지 기능에 관련된 아미노산의 발굴)

  • Kim Yong-Jin;Ko In-Jeong;Oh Jeong-Il
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.485-492
    • /
    • 2006
  • The PrrBA two-component system is one of the major regulatory systems that control expression of photosynthesis genes in response to changes in oxygen tension in the anoxygenic photosynthetic bacterium, Rhodobacter sphaeroides. The system consists of the PrrB histidine kinase and the PrrA response regulator. The N-terminal transmembrane domain of PrrB serves as a signal-sensing domain and comprises six transmembrane helices forming three periplasmic loops and two cytoplasmic loops. The $3^{rd}$ and $4^{th}$ transmembrane helices and the $2^{nd}$ periplasmic loop were suggested to play a crucial role in redox-sensory function. In this study we demonstrated that mutations of Asp-90, Gln-93, Leu-94, Leu-98, and Asn-106 in the $2^{nd}$ periplasmic loop and its neighboring region led to severe defects in PrrB sensory function, indicating that these amino acids might be related to the redox-sensing function of PrrB. The mutant forms (D90E, D90N, and D90A) of PrrB were heterologously overexpressed in Escherichia coli, purified by means of affinity chromatography and their autokinase activities were comparatively assessed. The D90N form of PrrB was shown to possess higher autokinase activity than the wild-type form of PrrB, whereas the D90E form of PrrB displayed lower autokinase activity than the wild-type form of PrrB. The D90A mutation led to the loss of PrrB autokinase activity.

Characterization of a Novel DWD Protein that Participates in Heat Stress Response in Arabidopsis

  • Kim, Soon-Hee;Lee, Joon-Hyun;Seo, Kyoung-In;Ryu, Boyeong;Sung, Yongju;Chung, Taijoon;Deng, Xing Wang;Lee, Jae-Hoon
    • Molecules and Cells
    • /
    • v.37 no.11
    • /
    • pp.833-840
    • /
    • 2014
  • Cullin4-RING ubiquitin ligase (CRL4) is a family of multi-subunit E3 ligases. To investigate the possible involvement of CRL4 in heat stress response, we screened T-DNA insertion mutants of putative CRL4 substrate receptors that exhibited altered patterns in response to heat stress. One of the mutants exhibited heat stress tolerance and was named heat stress tolerant DWD1 (htd1). Introduction of HTD1 gene into htd1-1 led to recovery of heat sensitivity to the wild type level, confirming that the decrease of HTD1 transcripts resulted in heat tolerance. Therefore, HTD1 plays a negative role in thermotolerance in Arabidopsis. Additionally, HTD1 directly interacted with DDB1a in yeast two-hybrid assays and associated with DDB1b in vivo, supporting that it could be a part of a CRL4 complex. Various heat-inducible genes such as HSP14.7, HSP21, At2g03020 and WRKY28 were hyper-induced in htd1-1, indicating that HTD1 could function as a negative regulator for the expression of such genes and that these genes might contribute to thermotolerance of htd1-1, at least in part. HTD1 was associated with HSP90-1, a crucial regulator of thermotolerance, in vivo, even though the decrease of HTD1 did not affect the accumulation pattern of HSP90-1 in Arabidopsis. These findings indicate that a negative role of HTD1 in thermotolerance might be achieved through its association with HSP90-1, possibly by disturbing the action of HSP90-1, not by the degradation of HSP90-1. This study will serve as an important step toward understanding of the functional connection between CRL4-mediated processes and plant heat stress signaling.

Differential expression of a poplar SK2-type dehydrin gene in response to various stresses

  • Bae, Eun-Kyung;Lee, Hyo-Shin;Lee, Jae-Soon;Noh, Eun-Woon
    • BMB Reports
    • /
    • v.42 no.7
    • /
    • pp.439-443
    • /
    • 2009
  • Dehydrins are group II, late embryogenesis abundant proteins that act putatively as chaperones in stressed plants. To elucidate the function of dehydrins in poplar, we isolated the $SK_2$-type dehydrin gene Podhn from Populus alba $\times$ P. tremula var. glandulosa suspension cells and analyzed its expression following treatments of abiotic stress, wounding and plant growth regulator. Sequence homology and phylogenetic analyses indicate Podhn encodes an acidic dehydrin (pI 5.14, 277 amino acids, predicted size 25.6 kDa) containing two lysine-rich "K-segments" and a 7-serine residue "S-segment", both characteristic of $SK_2$-type dehydrins. Southern blots show Podhn genes form a small gene family in poplar. Podhn was expressed in all tissues examined under unstressed conditions, but most strongly in cell suspensions (especially in the stationary phase). Drought, salt, cold and exogenous abscisic acid (ABA) treatments enhanced Podhn expression, while wounding and jasmonic acid caused its reduction. Therefore, Podhn might be involved in ABA or stress response.

Active Control of Offshore Structures for Wave Response Reduction Using Probabilistic Neural Network

  • Kim, Doo-Kie;Kim, Dong-Hyawn;Chang, Sang-Kil;Chang, Seong-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.1-8
    • /
    • 2006
  • Offshore structures are subjected to wave, wind, and earthquake loads. The failure of offshore structures can cause sea pollution, as well as losses of property and lives. Therefore, safety of the structure is an important issue. The reduction of the dynamic response of offshore towers, subjected wind generated random ocean waves, is a critical problem with respect to serviceability, fatigue life and safety of the structure. In this paper, a structural control method is proposed to control the vibration of offshore structures by the probabilistic neural network (PNN). The state vectors of the structure and control forces are used for training patterns of the PNN, in which control forces are prepared by linear quadratic regulator (LQR) control algorithm. The proposed algorithm is applied to a fixed offshore structure under random ocean waves. Active control of the fixed offshore structure using the PNN control algorithm shows good results.