• Title/Summary/Keyword: Response accuracy

Search Result 1,813, Processing Time 0.023 seconds

A new high-order response surface method for structural reliability analysis

  • Li, Hong-Shuang;Lu, Zhen-Zhou;Qiao, Hong-Wei
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.779-799
    • /
    • 2010
  • In order to consider high-order effects on the actual limit state function, a new response surface method is proposed for structural reliability analysis by the use of high-order approximation concept in this study. Hermite polynomials are used to determine the highest orders of input random variables, and the sampling points for the determination of highest orders are located on Gaussian points of Gauss-Hermite integration. The cross terms between two random variables, only in case that their corresponding percent contributions to the total variation of limit state function are significant, will be added to the response surface function to improve the approximation accuracy. As a result, significant reduction in computational cost is achieved with this strategy. Due to the addition of cross terms, the additional sampling points, laid on two-dimensional Gaussian points off axis on the plane of two significant variables, are required to determine the coefficients of the approximated limit state function. All available sampling points are employed to construct the final response surface function. Then, Monte Carlo Simulation is carried out on the final approximation response surface function to estimate the failure probability. Due to the use of high order polynomial, the proposed method is more accurate than the traditional second-order or linear response surface method. It also provides much more efficient solutions than the available high-order response surface method with less loss in accuracy. The efficiency and the accuracy of the proposed method compared with those of various response surface methods available are illustrated by five numerical examples.

Evaluating the Accuracy of Blood Pressure Measurement (혈압측정의 정확성 평가)

  • Cho, Sung-Hyun;Hwang, Jeong-Hae;Kim, Eun-Gyung;Oh, Byung-Hee;Kim, Chang-Yup
    • Quality Improvement in Health Care
    • /
    • v.3 no.1
    • /
    • pp.94-103
    • /
    • 1996
  • Background : Blood pressure is an important indicator in diagnosis and assessing treatment of a patient. Clinical staffs use blood pressure on the assumption that measured value is accurate and reliable. However, whether measured blood pressure is accurate has been rarely investigated in Korea. Objectives : The aims of this study are to evaluate clinical staffs' knowledge and technique as well as accuracy of sphygmomanometer. Also the program to improve the measurement is developed. Methods : Seventy-three registered nurses were asked nine multiple choice questions including Korotkoff sound, cuff size, and deflation rate. Simultaneously characteristics of nurses were examined, age, working place, duration of employment and academic degree. A testing videotape(Standardizing Measurement Video-Tutored Course) was used for evaluating the accuracy of measurement. Testees were to read and record the 12 cases of blood pressure measurement, watching a falling mercury column and hearing Korotkoff sounds. After 10 minutes' education, they were again tested with the same cases. Additionally, 83 mercury sphygmomanometers were checked to find defects such as inaccurate calibration and zero setting, leaky bladder, etc. Results: For the knowledge testing correct response rate was 41.1%. They were the lowest in selecting the proper cuff size and Korotkoff sound. In examining accuracy of blood pressure with videotape, nurses had 67.7% correct response rate. The correct response rate was significantly improved by a session of education. About 23% of sphygmomanometers was without discernable defects. Conclusion : The knowledge and skill of clinical staffs along with the accuracy of equipment have to be improved. A properly designed education program would contribute to the accuracy improvement of blood pressure measurement. Also, more concerns should be given to the precision and maintenance of equipment.

  • PDF

Prediction of Shape Accuracy in Elastomer-Forming of a Cylindrical Tube by a Response Surface Method (반응표면법을 이용한 실린더 튜브 고탄성체 성형의 형상 정확도 예측)

  • Kim, K.T.;Lee, G.A.;Choi, S.;Lee, H.W.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.218-224
    • /
    • 2008
  • A recent trend in automotive parts has been an integration of sub-assemblies with unified shapes. Tube structures also have been integrated to one body structure by using a near net shape forming instead of adopting welding. A cylindrical elastomer-forming process can be utilized to form a steel tube compressed in a radial direction. This process has some advantages compared to a hydro-forming or a swaging process in the viewpoint of a lower investment and a higher productivity. In order to predict a feasible specification of products within a work capability of the elastomer-forming equipment developed previously, effects of geometrical parameters of a tube on its shape accuracy are examined. Two characteristic parameters to account for the shape accuracy are chosen. One is the curvature radius at the corner part and the other is the straight ratio of the formed region. Careful examination of two parameters has led that the shape accuracy can be easily predicted by the regression equation obtained from the response surface method.

Improved Response Surface Method Using Modified Selection Technique of Sampling Points (개선된 평가점 선정기법을 이용한 응답면기법)

  • 김상효;나성원;황학주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.248-255
    • /
    • 1993
  • Recently, due to the increasing attention to the structural safety under uncertain environments, many researches on the structural reliability analysis have been peformed. Some useful methods are available to evaluate performance reliability of structures with explicit limit states. However, for large structures, in which structural behaviors can be analyzed with finite element models and the limit states are only expressed implicitly, Monte-Carlo simulation method has been mainly used. However, Monte-Carlo simulation method spends too much computational time on repetitive structural analysis. Many alternative methods are suggested to reduce the computational work required in Monte-Carlo simulation. Response surface method is widely used to improve the efficiency of structural reliability analysis. Response surface method is based on the concept of approximating simple polynomial function of basic random variables for the limit state which is not easily expressed in explicit forms of design random variables. The response surface method has simple algorithm. However, the accuracy of results highly depends on how properly the stochastic characteristics of the original limit state has been represented by approximated function, In this study, an improved response surface method is proposed in which the sampling points for creating response surface are modified to represent the failure surface more adequately and the combined use of a linear response surface function and Rackwitz-Fiessler method has been employed. The method is found to be more effective and efficient than previous response surface methods. In addition more consistent convergence is achieved, Accuracy of the proposed method has been investigated through example.

  • PDF

Accuracy and robustness of hysteresis loop analysis in the identification and monitoring of plastic stiffness for highly nonlinear pinching structures

  • Hamish Tomlinson;Geoffrey W. Rodgers;Chao Xu;Virginie Avot;Cong Zhou;J. Geoffrey Chase
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.101-111
    • /
    • 2023
  • Structural health monitoring (SHM) covers a range of damage detection strategies for buildings. In real-time, SHM provides a basis for rapid decision making to optimise the speed and economic efficiency of post-event response. Previous work introduced an SHM method based on identifying structural nonlinear hysteretic parameters and their evolution from structural force-deformation hysteresis loops in real-time. This research extends and generalises this method to investigate the impact of a wide range of flag-shaped or pinching shape nonlinear hysteretic response and its impact on the SHM accuracy. A particular focus is plastic stiffness (Kp), where accurate identification of this parameter enables accurate identification of net and total plastic deformation and plastic energy dissipated, all of which are directly related to damage and infrequently assessed in SHM. A sensitivity study using a realistic seismic case study with known ground truth values investigates the impact of hysteresis loop shape, as well as added noise, on SHM accuracy using a suite of 20 ground motions from the PEER database. Monte Carlo analysis over 22,000 simulations with different hysteresis loops and added noise resulted in absolute percentage identification error (median, (IQR)) in Kp of 1.88% (0.79, 4.94)%. Errors were larger where five events (Earthquakes #1, 6, 9, 14) have very large errors over 100% for resulted Kp as an almost entirely linear response yielded only negligible plastic response, increasing identification error. The sensitivity analysis shows accuracy is reduces to within 3% when plastic drift is induced. This method shows clear potential to provide accurate, real-time metrics of non-linear stiffness and deformation to assist rapid damage assessment and decision making, utilising algorithms significantly simpler than previous non-linear structural model-based parameter identification SHM methods.

Dose metrology: TLD/OSL dose accuracy and energy response performance

  • Omaima Essaad Belhaj;Hamid Boukhal;El Mahjoub Chakir;Meryeme Bellahsaouia;Siham Belhaj;Younes Sadeq;Mohammed Tazi;Tahar El Khoukhi;Maryam Hadouachi;Khaoula Laazouzi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.717-724
    • /
    • 2023
  • An essential step in evaluating and comparing the performance of two passive radiation dosimeter types, thermosluminescent (TLD) and optically stimulated luminescence (OSL), used by workers in environments with ionizing radiation for individual radiological monitoring and control of external exposure at various times (cumulative dose for 1 month), is to compare the measured dose accuracy, energy response, and coefficient of variation. In fact this performance study consists in determining the accuracy of both R(10) and R(0.07) which are considered as the ratios of the measured dose (Hp(10) or Hp(0.07)) to the delivered dose (Hp(10) or Hp(0.07)) for each photon energy. The validity of the results of this test is based on the acceptance limits of the ICRP and the international standard IEC-62387. The relative energy response used is normalized to the 137Cs 662 keV energy to find which energy response is closest to the ideal case, and the coefficient of variation that allows to determine the statistical fluctuation of the Hp(10) and Hp(0.07) doses. The results of the accuracy test for the OSL and TLD dosimeters are acceptable because they fall within the ICRP limits. For the energy response, the OSL performs better than the TLD for Hp(10) and Hp(0.07), and for the coefficient of variation, the OSL satisfies the requirements of ISO 62387 for both Hp(10) and Hp(0.07), while the TLD satisfies these requirements only for the measurement of Hp (0.07).

Investigation of elasto-plastic seismic response analysis method for complex steel bridges

  • Tang, Zhanzhan;Xie, Xu;Wang, Yan;Wang, Junzhe
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.333-347
    • /
    • 2014
  • Multi-scale model can take both computational efficiency and accuracy into consideration when it is used to conduct elasto-plastic seismic response analysis for complex steel bridges. This paper proposed a method based on pushover analysis of member sharing the same section pattern to verify the accuracy of multi-scale model. A deck-through type steel arch bridge with a span length of 200m was employed for seismic response analysis using multi-scale model and fiber model respectively, the validity and necessity of elasto-plastic seismic analysis for steel bridge by multi-scale model was then verified. The results show that the convergence of load-displacement curves obtained from pushover analysis for members having the same section pattern can be used as a proof of the accuracy of multi-scale model. It is noted that the computational precision of multi-scale model can be guaranteed when length of shell element segment is 1.40 times longer than the width of section where was in compression status. Fiber model can only be used for the predictions of the global deformations and the approximate positions of plastic areas on steel structures. However, it cannot give exact prediction on the distribution of plastic areas and the degree of the plasticity.

Keywords and Spatial Based Indexing for Searching the Things on Web

  • Faheem, Muhammad R.;Anees, Tayyaba;Hussain, Muzammil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1489-1515
    • /
    • 2022
  • The number of interconnected real-world devices such as sensors, actuators, and physical devices has increased with the advancement of technology. Due to this advancement, users face difficulties searching for the location of these devices, and the central issue is the findability of Things. In the WoT environment, keyword-based and geospatial searching approaches are used to locate these devices anywhere and on the web interface. A few static methods of indexing and ranking are discussed in the literature, but they are not suitable for finding devices dynamically. The authors have proposed a mechanism for dynamic and efficient searching of the devices in this paper. Indexing and ranking approaches can improve dynamic searching in different ways. The present paper has focused on indexing for improving dynamic searching and has indexed the Things Description in Solr. This paper presents the Things Description according to the model of W3C JSON-LD along with the open-access APIs. Search efficiency can be analyzed with query response timings, and the accuracy of response timings is critical for search results. Therefore, in this paper, the authors have evaluated their approach by analyzing the search query response timings and the accuracy of their search results. This study utilized different indexing approaches such as key-words-based, spatial, and hybrid. Results indicate that response time and accuracy are better with the hybrid approach than with keyword-based and spatial indexing approaches.

Double 𝑙1 regularization for moving force identification using response spectrum-based weighted dictionary

  • Yuandong Lei;Bohao Xu;Ling Yu
    • Structural Engineering and Mechanics
    • /
    • v.91 no.2
    • /
    • pp.227-238
    • /
    • 2024
  • Sparse regularization methods have proven effective in addressing the ill-posed equations encountered in moving force identification (MFI). However, the complexity of vehicle loads is often ignored in existing studies aiming at enhancing MFI accuracy. To tackle this issue, a double 𝑙1 regularization method is proposed for MFI based on a response spectrum-based weighted dictionary in this study. Firstly, the relationship between vehicle-induced responses and moving vehicle loads (MVL) is established. The structural responses are then expanded in the frequency domain to obtain the prior knowledge related to MVL and to further construct a response spectrum-based weighted dictionary for MFI with a higher accuracy. Secondly, with the utilization of this weighted dictionary, a double 𝑙1 regularization framework is presented for identifying the static and dynamic components of MVL by the alternating direction method of multipliers (ADMM) method successively. To assess the performance of the proposed method, two different types of MVL, such as composed of trigonometric functions and driven from a 1/4 bridge-vehicle model, are adopted to conduct numerical simulations. Furthermore, a series of MFI experimental verifications are carried out in laboratory. The results shows that the proposed method's higher accuracy and strong robustness to noises compared with other traditional regularization methods.

A Study on Characteristics of a Compensator System for Swash Plate Type Axial Piston Pump (사판식 액시얼 피스톤 펌프의 가변용량 시스템의 특성에 관한 연구)

  • Kim, Shin;Oh, Suk-Hyung;Jung, Jae-Youn
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.15-22
    • /
    • 1998
  • Recently, the importance of variable displacement piston pump is increasing in industrial world. Especially, most consumers require various range of pressures and flow rates. Pressure compensator is a system controlling flow rate in piston pump at low cost and, therefore, satisfies the need of consumers. However, the system has serious problems, such as response and leakage. The response and leakage are affected by clearance between actuator piston and cylinder, roughness of surface, and spool overlap. In this paper, these effects are investigated experimentally, and optimal clearance and chamfer is obtained. While diameter of cylinder is fixed and diameter of actuator piston is changed in this experiment, response and leakage are measured. Also parameters such as roughness and processing accuracy are changed for piston of fixed clearance. Experimental setup modelled into several parts of actuator piston, cylinder, spool, and swash plate. Input pressure is changed by function generator and proportional valve. The result of this experiment shows that leakage increases very much in proportion to the increase of clearance, and especially leakage occurs enormously when clearance is more than 0.002. The response is not good because as clearance increases leakage increases and as clearance decreases viscous damping effect increases. Accordingly, it is found out that optimal clearance range exists for tile response, within about 0.0012∼0.0014, at this time. Futhermore, the better roughness and geometrical accuracy of actuator piston are, the smaller are leakage and friction. The paper informs that response and leakage are influenced by and geometrical accuracy of actuator piston, roughness of surface, and the clearance between actuator piston and cylinder, and that optimal design of actuator piston in the pressure compensator is possible.