• Title/Summary/Keyword: Response accuracy

Search Result 1,802, Processing Time 0.023 seconds

A Study on the Effect of Pre-cue in Simple Reactions on Control-on-Display Interfaces

  • Lim, Ji-Hyoun;Choi, Jun-Young;Kim, Young-Su
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.563-569
    • /
    • 2011
  • Objective: This study focuses on the effects of pre-cues informing the location of upcoming visual stimulus on finger movement response in the context of control-on-display interfaces. Background: Previous research on pre-cues focus on attention allocation and motion studies were limited to indirect control conditions. The design of this study aimed to collect data on the exact landing point for finger-tap responses to a given visual stimulus. Method: Controlled visual stimuli and tasks were presented on a UI evaluation system built using mobile web standards; response accuracy and response time were measured and collected as appropriate. Among the 16 recruited participants, 11 completed the experiment. Results: Providing pre-cue on the location of stimulus affected response time and response accuracy. The response bias, which is a distance from the center of stimulus to the finger-tap location, was larger when the pre-cue was given during a one-handed operation. Conclusion: Given a pre-cue, response time decreases, but with accuracy penalized. Application: In designing touch-screen UI's - more strictly, visual components also acting as controllers - designers would do well to balance human perceptual and cognitive characteristics strategically.

Capabilities of stochastic response surface method and response surface method in reliability analysis

  • Jiang, Shui-Hua;Li, Dian-Qing;Zhou, Chuang-Bing;Zhang, Li-Min
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.111-128
    • /
    • 2014
  • The stochastic response surface method (SRSM) and the response surface method (RSM) are often used for structural reliability analysis, especially for reliability problems with implicit performance functions. This paper aims to compare these two methods in terms of fitting the performance function, accuracy and efficiency in estimating probability of failure as well as statistical moments of system output response. The computational procedures of two response surface methods are briefly introduced first. Then their capabilities are demonstrated and compared in detail through two examples. The results indicate that the probability of failure mainly reflects the accuracy of the response surface function (RSF) fitting the performance function in the vicinity of the design point, while the statistical moments of system output response reflect the accuracy of the RSF fitting the performance function in the entire space. In addition, the performance function can be well fitted by the SRSM with an optimal order polynomial chaos expansion both in the entire physical and in the independent standard normal spaces. However, it can be only well fitted by the RSM in the vicinity of the design point. For reliability problems involving random variables with approximate normal distributions, such as normal, lognormal, and Gumbel Max distributions, both the probability of failure and statistical moments of system output response can be accurately estimated by the SRSM, whereas the RSM can only produce the probability of failure with a reasonable accuracy.

Differences in the Control of Anticipation Timing Response by Spatio-temporal Constraints

  • Seok-Hwan LEE;Sangbum PARK
    • Journal of Sport and Applied Science
    • /
    • v.7 no.2
    • /
    • pp.39-51
    • /
    • 2023
  • Purpose: The purpose of this study was to investigate differences in the control process to satisfy spatial and temporal constraints imposed upon the anticipation timing response by analyzing the effect of spatio-temporal accuracy demands on eye movements, response accuracy, and the coupling of eye and hand movements. Research design, data, and methodology: 12 right-handed male subjects participated in the experiment and performed anticipation timing responses toward a stimulus moving at three velocities (0.53m/s, 0.66m/s, 0.88m/s) in two task constraint conditions (temporal constraint, spatial constraint). During the response, response accuracy and eye movement patterns were measured from which timing and radial errors, the latency of saccade, fixation duration of the point of gaze (POG), distance between the POG and stimulus, and spatio-temporal coupling of the POG and hand were calculated. Results: The timing and radial errors increased with increasing stimulus velocity, and the spatio-temporal constraints led to larger timing errors than the temporal constraints. The latency of saccade and the temporal coupling of eye and hand decreased with increasing stimulus velocity and were shorter and longer respectively in the spatio-temporal constraint condition than in the temporal constraint condition. The fixation duration of the POG also decreased with increasing stimulus velocity, but no difference was shown between task constraint conditions. The distance between the POG and stimulus increased with increasing stimulus velocity and was longer in the temporal constraint condition compared to the spatio-temporal constraint condition. The spatial coupling of eye and hand was larger with the velocity 0.88m/s than those in other velocity conditions. Conclusions: These results suggest that differences in eye movement patterns and spatio-temporal couplings of stimulus, eye and hand by task constraints are closely related with the accuracy of anticipation timing responses, and the spatial constraints imposed may decrease the temporal accuracy of response by increasing the complexity of perception-action coupling.

Comparison of Reliability Estimation Methods for One-shot Systems Using Accelerated Life Tests (가속수명시험을 이용한 원샷 시스템의 신뢰도 추정방법 비교)

  • Son, Young-Kap;Jang, Hyun-Jung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.4
    • /
    • pp.212-218
    • /
    • 2010
  • This paper shows accuracy comparison results of reliability estimation methods for one-shot systems with respect to sample sizes. To compare accuracy in reliability estimation methods, quantal-response data, characterizing one-shot systems, were simulated using failure times of LED obtained through the accelerated life test, and then the true reliability over time was evaluated using the failure times. The simulated quantal-response data were used to estimate the true reliability through applying reliability estimation methods in open literature. Accuracy of each reliability estimation method was compared in terms of both SSE (Sum of Squared Error) and MSE (Mean Squared Error), and then estimation trend for each method is found. Feasible bounds which true reliability would exist within were estimated through applying the found trends to quantal-response data set of a real weapon system.

Color accuracy of imaging using color filters

  • Boher, P.;Leroux, T.;Patton, V. Collomb;Bignon, T.
    • Journal of Information Display
    • /
    • v.13 no.1
    • /
    • pp.7-16
    • /
    • 2012
  • In this paper, the problem concerning the color accuracy of imaging systems using color filters is examined. It is shown that the only solution to the problem is to build systems with the spectral response matching the CIE curves as closely as possible. If the spectral response does not closely match the CIE curves, it was demonstrated that calibration cannot solve the problem and will result in very unstable colorimeters. A practical solution that uses telecentric lenses on the sensor side in addition to dedicated color filters for each CCD detector is presented. For systems that closely match the CIE curves, an innovative method of improving the color accuracy based on the precise measurement of the spectral response is presented. The small discrepancies in the spectral response with regard to the CIE curves are corrected in different ways during the measurements. Finally, it is shown that the tristimulus calibration that is used for display measurement is very unstable for systems without CIE matching and is much more stable with systems that closely match the CIE curves.

Effects of Auditory Warning Types on Response Time and Accuracy in Ship Bridges (선교내에서 청각경보음의 유형이 반응속도와 정확성에 미치는 영향)

  • Ha, Wook-Hyun;Park, Sung-Ha;Kim, Hong-Tae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.673-680
    • /
    • 2010
  • The effects of different auditory warnings on response time and accuracy were studied in a laboratory ship-bridge work environment. Subjective preference on the type of auditory warnings was also of a primary concern. Twenty five subjects were asked to select an appropriate button for the warning sound presented with three types of auditory warning (abstract sound, auditory icon, and voice alarm) and five levels of warning situation (fire, steering failure, collision, engine failure, and low power). Results showed that the response time and accuracy was significantly affected by the types of auditory warning. The voice alarm resulted in a higher accuracy and subjective preference, as compared to the auditory icon and abstract sound. Regarding the response time, auditory icons and voice alarms were equivalent and superior to abstract sounds. Actual or potential applications of this research include guidelines for the design of integrated ship bridge systems.

Separation of background and resonant components of wind-induced response for flexible structures

  • Li, Jing;Li, Lijuan;Wang, Xin
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.607-623
    • /
    • 2015
  • The wind-induced dynamic response of large-span flexible structures includes two important components-background response and resonant response. However, it is difficult to separate the two components in time-domain. To solve the problem, a relational expression of wavelet packet coefficients and power spectrum is derived based on the principles of digital signal processing and the theories of wavelet packet analysis. Further, a new approach is proposed for separation of the background response from the resonant response. Then a numerical example of frequency detection is provided to test the accuracy and the spectral resolution of the proposed approach. In the engineering example, the approach is applied to compute the power spectra of the wind-induced response of a large-span roof structure, and the accuracy of spectral estimation for stochastic signals is verified. The numerical results indicate that the proposed approach is efficient and accurate with high spectral resolution, so it is applicable for power spectral computation of various response signals of structures induced by the wind. Moreover, the background and the resonant response time histories are separated successfully using the proposed approach, which is sufficiently proved by detailed verifications. Therefore, the proposed approach is a powerful tool for the verification of the existing frequency-domain formulations.

A response surface method based on sub-region of interest for structural reliability analysis

  • Zhao, Weitao;Shi, Xueyan;Tang, Kai
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.587-602
    • /
    • 2016
  • In structural reliability analysis, the response surface method is widely adopted because of its numerical efficiency. It should be understood that the response function must approximate the actual limit state function accurately in the main region influencing failure probability where it is evaluated. However, the size of main region influencing failure probability was not defined clearly in current response surface methods. In this study, the concept of sub-region of interest is constructed, and an improved response surface method is proposed based on the sub-region of interest. The sub-region of interest can clearly define the size of main region influencing failure probability, so that the accuracy of the evaluation of failure probability is increased. Some examples are introduced to demonstrate the efficiency and the accuracy of the proposed method for both numerical and implicit limit state functions.

A novel reliability analysis method based on Gaussian process classification for structures with discontinuous response

  • Zhang, Yibo;Sun, Zhili;Yan, Yutao;Yu, Zhenliang;Wang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.771-784
    • /
    • 2020
  • Reliability analysis techniques combining with various surrogate models have attracted increasing attention because of their accuracy and great efficiency. However, they primarily focus on the structures with continuous response, while very rare researches on the reliability analysis for structures with discontinuous response are carried out. Furthermore, existing adaptive reliability analysis methods based on importance sampling (IS) still have some intractable defects when dealing with small failure probability, and there is no related research on reliability analysis for structures involving discontinuous response and small failure probability. Therefore, this paper proposes a novel reliability analysis method called AGPC-IS for such structures, which combines adaptive Gaussian process classification (GPC) and adaptive-kernel-density-estimation-based IS. In AGPC-IS, an efficient adaptive strategy for design of experiments (DoE), taking into consideration the classification uncertainty, the sampling uniformity and the regional classification accuracy improvement, is developed with the purpose of improving the accuracy of Gaussian process classifier. The adaptive kernel density estimation is introduced for constructing the quasi-optimal density function of IS. In addition, a novel and more precise stopping criterion is also developed from the perspective of the stability of failure probability estimation. The efficiency, superiority and practicability of AGPC-IS are verified by three examples.

Structural damage identification with power spectral density transmissibility: numerical and experimental studies

  • Li, Jun;Hao, Hong;Lo, Juin Voon
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.15-40
    • /
    • 2015
  • This paper proposes a structural damage identification approach based on the power spectral density transmissibility (PSDT), which is developed to formulate the relationship between two sets of auto-spectral density functions of output responses. The accuracy of response reconstruction with PSDT is investigated and the damage identification in structures is conducted with measured acceleration responses from the damaged state. Numerical studies on a seven-storey plane frame structure are conducted to investigate the performance of the proposed damage identification approach. The initial finite element model of the structure and measured acceleration measurements from the damaged structure are used for the identification with a dynamic response sensitivity-based model updating method. The simulated damages can be identified accurately without and with a 5% noise effect included in the simulated responses. Experimental studies on a steel plane frame structure in the laboratory are performed to further verify the accuracy of response reconstruction with PSDT and validate the proposed damage identification approach. The locations of the introduced damage are detected accurately and the stiffness reductions in the damaged elements are identified close to the true values. The identification results demonstrated the accuracy of response reconstruction as well as the correctness and efficiency of the proposed damage identification approach.