• Title/Summary/Keyword: Respiratory gas exchange

Search Result 53, Processing Time 0.026 seconds

Enhancement of Mass Transfer Using Piezoelectric Material in Fluid Flow System

  • Kim, Gi-Beum;Chong, Woo-Suk;Kwon, Tae-Kyu;Hong, Chul-Un;Kim, Nam-Gyun;Jheong, Gyeong-Rak
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.165-170
    • /
    • 2004
  • The purpose of this work was to assess and quantify the beneficial effects of long-term gas exchange, at varying frequencies, for the development of a vibrating intravascular lung assistance device (VIVLAD), for patients suffering from acute respiratory distress syndrome (ARDS). The experimental design and procedure have been applied to the construction of a new device for assessing the effectiveness of membrane vibrations. An analytical solution has been developed for the hydrodynamics of flow through a bundle of sinusoidally vibrated hollow fibers, with the intention of gaining insight into how wall vibrations might enhance the performance of the VIVLAD. As a result, the maximum oxygen transfer rate was reached at the maximum amplitude and through the transfer of vibrations to the hollow fiber membranes. The device was excited by a frequency band of 7Hz at various water flow rates, as this frequency was the 2nd mode resonance frequency of the flexible beam. 675 hollow fiber membranes were also bundled, within the blood flow, into the device.

  • PDF

The Effects of Inspiratory Pause on Airway Pressure and Gas Exchange under Same I:E ratio in Volume-controlled Ventilation (Volume-Controlled Mode의 기계환기시 동일환 I:E Ratio하에서 Inspiratory Pause가 기도압 몇 가스교환에 미치는 영향)

  • Choi, Won-Jun;Jung, Sung-Han;Lee, Jeong-A;Choe, Kang-Hyeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.5
    • /
    • pp.1022-1030
    • /
    • 1998
  • Background : In volume-controlled ventilation, the use of inspiratory pause increases the inspiratory time and thus increases mean airway pressure and improves ventilation. But under the same I : E ratio, the effects of inspiratory pause on mean airway pressure and gas exchange are not certain. Moreover, the effects may be different according to the resistance of respiratory system. So we studied the effects of inspiratory pause on airway pressure and gas exchange under the same I : E ratio in volume-controlled ventilation. Methods: Airway pressure and arterial blood gases were evaluated in 12 patients under volume-controlled mechanical ventilation with and without inspiratory pause time 5%. The I : E ratio of 1 : 3, $FiO_2$, tidal volume, respiratory rate, and PEEP were kept constant. Results: $PaCO_2$ with inspiratory pause was lower than without inspiratory pause ($38.6{\pm}7.4$ mmHg vs. $41.0{\pm}7.7$ mmHg. p<0.01). P(A-a)$O_2$ was not different between ventilation with and without inspiratory pause $185.3{\pm}86.5$ mmHg vs. $184.9{\pm}84.9$ mmHg, p=0.766). Mean airway pressure with inspiratory pause was higher than without inspiratory pause ($9.7{\pm}4.0\;cmH_2O$ vs. $8.8{\pm}4.0\;cmH_2O$, p<0.01). The resistance of respiratory system inversely correlated with the pressure difference between plateau pressure with pause and peak inspiratory pressure without pause (r=-0.777, p<0.l), but positively correlated with the pressure difference between peak inspiratory pressure with pause and peak inspiratory pressure without pause (r=0.811, p<0.01). Thus the amount of increase in mean airway pressure with pause positively correlated with the resistance of respiratory system (r=0.681, p<0.05). However, the change of mean airway pressure did not correlated with the change of $PaCO_2$. Conclusion: In volume-controlled ventilation under the same I : E ratio of 1 : 3, inspiratory pause time of 5% increases mean airway pressure and improves ventilation. Although the higher resistance of respiratory system, the more increased mean airway pressure, the increase in mean airway pressure did not correlated with the change in $PaCO_2$.

  • PDF

Respiratory Gas Exchange and Ventilatory Functions at Maximal Exercise (최대운동시의 호흡성 가스교환 및 환기기능)

  • Cho, Yong-Keun;Jung, Tae-Hoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.6
    • /
    • pp.900-912
    • /
    • 1995
  • Background: Although graded exercise stress tests are widely used for the evaluation of cardiorespiratory performance, normal standards on respiratory gas exchange and ventilatory functions at maximal exercise in Koreans have not been well established. The purpose of this study is to provide reference values on these by sex and age, along with derivation of some of their prediction equations. Method: Symptom-limited maximal exercise test was carried out by Bruce protocol in 1,000 healthy adults consisting of 603 males and 397 females, aged 20~66 years. Among them VC, $FEV_1$ and MVV were also determined in 885 cases. All the subjects were members of a health center, excluding athletes. During the exercise, subjects were allowed to hold on to front hand rail of the treadmill for safety purpose. Results: The $VO_2\;max/m^2$, $VCO_2\;max/m^2$ and $V_E\;max/m^2$ were greater in males than in females and decreased with age. The RR max in men and women was similar but decreased slightly with age. The $V_T$ max was markedly greater in men but showed no significant changes with age in either gender. The mean of $V_T$ max/VC, $V_E$ max/MVV and BR revealed that there were considerable ventilatory reserves at maximal exercise even in older females. The regression equations of the cardinal parameters obtained using exercise time(ET, min), age(A, yr), height(Ht, cm), weight(W, kg), sex(S, 0=male; 1=female), VC(L), $FEV_1$(L) and $V_E$ max(L) as variables are as follows: $VO_2\;max/m^2$(L/min)=1.449+0.073 ET-0.007A+0.010W-0.006Ht-0.209S, $VCO_2\;max/m^2$(L/min)=1.672+0.063ET-0.008A+0.010W-0.005Ht-0.319S, VE max/$m^2$(L/min)=58.161+1.503ET-0.315A-9.871S or VE max/$m^2$(L/min)=47.873+6.548 $FEV_1$-5.715 S, and VT max(L)=1.497+0.223VC-0.493S. Conclusion: Respiratory gas exchange and ventilatory variables at maximal exercise were studied in 1,000 non-athletes by Bruce protocol. During exercise, the subjects were allowed to hold on to hand rail of the treadmill for safety purpose. We feel that our results would provide ideal target values for patients and healthy individuals to be achieved, since our study subjects were members of a health center whose physical fitness levels were presumably higher than ordinary population.

  • PDF

Therapeutic Role of Inhaled Nitric Oxide for Acute Respiratory Failure in the Early Phase of Trauma (외상환자의 초기 호흡 부전에 대한 흡입산화질소의 적용)

  • Kim, Byoung Sung;Kyoung, Kyu-Hyouck;Park, Hojong
    • Journal of Trauma and Injury
    • /
    • v.28 no.3
    • /
    • pp.104-107
    • /
    • 2015
  • Purpose: Nitric oxide (NO) is a vasodilator and inhaled NO (iNO) is used in acute respiratory distress syndrome (ARDS) to improve alveolocapillary gas exchange. The mechanism to improve oxygenation is likely to redistribute blood flow from unventilated areas to ventilated areas. Though improvement of oxygenation, iNO therapy has not been shown to improve mortality and considered as only rescue therapy in severe hypoxemia. We conducted the study to investigate an efficacy of iNO in trauma patients with severe hypoxemia. Methods: We reviewed the trauma patients who underwent iNO therapy retrospectively from 2010 to 2014. Degree of hypoxemia was represented as $PaO_2/FiO_2$ ratio (PFR) and the severity of patient was represented with sequential organ failure assessment (SOFA) score. Patients were divided into the survivor group and non-survivor group according to the 28-day mortality. Results: A total of 20 patients were enrolled. The mortality of 28-day was 40%. There were no significant differences between survivor and non-survivor group in age, sex, severity of injury, PFR and SOFA score. There was significant difference in initiation time of iNO after injury (p=0.047). Maximum combinations of sensitivity and specificity for timing of iNO therapy were observed using cut-off of 3-day after injury with a sensitivity of 88% and specificity of 75%. Conclusion: Though iNO therapy does not influence the mortality, iNO therapy may decrease the mortality caused by respiratory failure in the early phase of trauma.

  • PDF

Model development to design modified atmosphere packaging of Mandarin oranges

  • Kim, Jong-Kyoung;Lee, Sang-Duk;Ha, Young-Sun;Lee, Jun-Ho
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.192.1-192
    • /
    • 2003
  • The aim of this study was to develop a model that could be used in the design of modified atmosphere packaging (MAP) for Mandarin oranges. Respiratory data at 5, 10, 20$^{\circ}C$ for mandarin oranges were gathered and altered for create useful respiration model. The maximum rate of oxygen uptake increased with increasing temperature. The packaging materials were conventional low density polyethylene and polypropylene with anti-fog, and anti-fungi treatments, and thickness was 30 $\mu\textrm{m}$ and 50 $\mu\textrm{m}$. Permeability tests were performed to find their oxygen, carbon dioxide, water vapor transmission rate as increases in temperature. Test results were then converted to logarithm format for MAP modeling. Optimum gas composition in the package system for fruits were set according to literature and upper or lower limits of oxygen and dioxide established. To predict gas composition at certain storage time, weight of fruits, film thickness, film type, and other variables, respiration rate was studied at various storage conditions. The validity of the model was tested experimentally by observing actual atmospheric changes inside packages. It is concluded that the strategy developed is of use in designing dynamic gas exchange MAP systems, and also has potential uses in similar agricultural products.

  • PDF

Pathophysiology of Chronic Obstructive Pulmonary Disease (만성폐쇄성폐질환의 병태생리)

  • Kim, Hyun Kuk;Lee, Sang-Do
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.1
    • /
    • pp.5-13
    • /
    • 2005
  • Chronic obstructive pulmonary disease (COPD) is a chronic progressive disease, characterized by irreversible airflow limitation, with a partially reversible component. The pathological abnormalities of COPD are associated with lung inflammation, imbalances of proteinase and antiproteinase, and oxidative stress, which are induced by noxious particles and gases in susceptible individuals. The physiological changes of COPD are mucus hypersecretion, ciliary dysfunction, airflow limitation, pulmonary hyperinflation, gas exchange abnormalities, pulmonary hypertension, cor pulmonale and systemic effects. The airflow limitation principally results from an increase in the resistance of the small conducting airways and a decrease in pulmonary elastic recoil due to emphysematous lung destruction. This article provides a general overview of the pathophysiology of COPD.

Skeletal Muscle Dysfunction in Patients with Chronic Obstructive Pulmonary Disease (만성폐쇄성폐질환 환자에서 골격근 기능 이상)

  • Kim, Ho-Cheol;Lee, Gi-Dong;Hwang, Young-Sil
    • Tuberculosis and Respiratory Diseases
    • /
    • v.68 no.3
    • /
    • pp.125-139
    • /
    • 2010
  • Patients with chronic obstructive pulmonary disease (COPD) frequently complain of dyspnea on exertion and reduced exercise capacity, which has been attributed to an increase in the work of breathing and in impaired of gas exchange. Although COPD primarily affects the pulmonary system, patients with COPD exhibit significant systemic manifestations of disease progression. These manifestations include weight loss, nutritional abnormalities, skeletal muscle dysfunction (SMD), cardiovascular problems, and psychosocial complications. It has been documented that SMD significantly contributes to a reduced exercise capacity in patients with COPD. Ventilatory and limb muscle in these patients show structural and functional alteration, which are influenced by several factors, including physical inactivity, hypoxia, smoking, aging, corticosteroid, malnutrition, systemic inflammation, oxidative stress, apoptosis, and ubiquitin-proteasome pathway activation. This article summarizes briefly the evidence and the clinical consequences of SMD in patients with COPD. In addition, it reviews contributing factors and therapeutic strategies.

The Study on the Effects of a Respiratory Rehabilitation Program for COPD Patients (만성 폐색성 폐질환자를 위한 호흡재활 프로그램 개발 및 효과에 관한 연구)

  • 김애경
    • Journal of Korean Academy of Nursing
    • /
    • v.31 no.2
    • /
    • pp.257-267
    • /
    • 2001
  • It is known that a pulmonary rehabilitation program improves dyspnea and exercise tolerence in patients with chronic obstructive pulmonary disease. However, it is also known that although it does not improve pulmonary function. This study was performed to evaluate the effect of a 4 week pulmonary rehabilitation on pulmonary function, gas exchange, and exercise tolerance in patients with chronic obstructive pulmonary disease. The pulmonary rehabilitation programs included breathing exercises, such as pursed-lip breathing and diaphragmatic breathing, upper-limb exercises, and inspiratory muscle training. These activities were performed for 4 weeks in twenty one patients with chronic obstructive pulmonary disease. Pre and post-rehabilitation pulmonary function and exercise capacities were compared after the 4 week period. Results are as follows: 1) Before the rehabilitation, the predicted value of FVC and FEV1 of the patients were 70.3$\pm$16.7% and 41.1$\pm$11.9% respectively. These pulmonary functions did not change after pulmonary rehabilitation. 2) Aloility of walking a 6 minute distance (325.29$\pm$122.24 vs 363.03$\pm$120.01 p=.01) and dyspnea (p=.00) were significantly improved after rehabilitation. Thus showing that pulmonary rehabilitation for 4 weeks can improve exercise performance and dyspnea in patients with chronic obstructive pulmonary disease.

  • PDF

Effects of oral caffeine and capsaicin administration on energy expenditure and energy substrates utilization in resting rats

  • Kim, Jisu;Jeon, Yerim;Hwang, Hyejung;Suh, Heajung;Lim, Kiwon
    • Korean Journal of Exercise Nutrition
    • /
    • v.15 no.4
    • /
    • pp.183-189
    • /
    • 2011
  • Caffeine and capsaicin increase resting energy metabolism. However, most measurements have been conducted in short-term studies. Therefore, we investigated the effects of caffeine and capsaicin on energy expenditure and energy substrate utilization in resting rats for 6 h. The caffeine (Experiment 1) experiment included four male rats aged 5 weeks and measured the effects of oral administration of caffeine (10 or 50 mg/kg) on respiratory gas, energy expenditure, and energy substrate oxidation for 6 h. Experiment 2 included four male rats aged 6 weeks to measure the effects of capsaicin (10 mg/kg) using the same method as in Experiment 1. The results of Experiment 1 indicated that O2 uptake and carbohydrate oxidation after caffeine administration for 2 h was higher in the 10 mg trial than that in the 50 mg or placebo trials (P < 0.05). However fat oxidation was not significantly different. In contrast, capsaicin (Experiment 2) observed no differences between the placebo and the capsaicin trials. In conclusion, caffeine initially increased the resting energy consumption for 2 h, and this energy expenditure was due to carbohydrate oxidation. Capsaicin did not change oxygen uptake, respiratory exchange ratio, fat oxidation, or carbohydrate oxidation.

The Combined Therapy of Inhaled Nitric Oxide and Prone Positioning Has an Additive Effect on Gas Exchange and Oxygen Transport in Patients with Acute Respiratory Distress Syndrome (급성호흡곤란증후군 환자에서 복와위(prone position)와 산화질소흡입(nitric oxide inhalation) 병용 치료의 효과)

  • Koh, Youn-Suck;Lim, Chae-Man;Lee, Ki-Man;Chin, Jae-Yong;Shim, Tae-Sun;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.6
    • /
    • pp.1223-1235
    • /
    • 1998
  • Background and Objective : Although prone positioning has been reported to improve gas exchange, prone positioning alone does not seem to be sufficient to increase systemic oxygen transport in an acute lung injury. The objective of this study was to investigate whether the combined therapy of low dose nitric oxide (NO) inhalation and prone positioning has an additive effect on the oxygenation and hemodynamics in patients with severe ARDS. Patients and Methods : Twelve patients with ARDS were included. Prone positioning alone, later combined with nitric oxide inhalation (5~10 ppm) from the supine position (baseline) were performed with serial measurement of gas exchange, respiratory mechanics and hemodynamic at sequential time points. The patient was regarded as a responder to prone positioning if an increase in $PaO_2/FiO_2$ of more than 20 mm Hg at 30 min or 120 min intervals after prone positioning was observed compared to that of the baseline. The same criterion was applied during nitric oxide inhalation. Results : Eight patients (66.5%) responded to prone positioning and ten patients (83.3%) including the eight just mentioned responded to the addition of NO inhalation. The $AaDO_2$ level also decreased promptly with the combination of prone positioning and NO inhalation compared to that of prone positioning alone ($191{\pm}109$ mm Hg vs. $256{\pm}137$ mm Hg, P<0.05). Hemodynamic parameters and lung compliance did not change significantly during prone positioning only. Following the addition of NO inhalation to prone positioning, the mean pulmonary artery pressure and pulmonary artery occlusion pressure decreased and cardiac output, stroke volume and oxygen delivery increased (P < 0.05) compared to those of prone 120 min. Conclusion : These findings indicate that NO inhalation would provide additional improvement in oxygenation and oxygen transport to mechanically ventilated patients with ARDS who are in a prone position.

  • PDF