• Title/Summary/Keyword: Respiration model

Search Result 140, Processing Time 0.029 seconds

Compilation of Respiration Model Parameters for Designing Modified Atmosphere Package of Fresh Produce

  • An, Duck Soon;Lee, Dong Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Enzyme kinetics-based respiration model can be effectively used for estimating respiration rate in $O_2$ consumption and $CO_2$ production of fresh produce as a function of $O_2$ and $CO_2$ concentrations. Arrhenius equation can be applied to describe the temperature dependence of the respiration rate. Parameters of enzyme kinetics-based respiration model and activation energy of Arrhenius equation were compiled from analysis of literature data and closed system experiment. They enable to estimate the respiration rate for any modified atmosphere conditions at temperature of interest and thus can be used for design of modified atmosphere packaging of fresh produce.

  • PDF

Mathematical Models of Respiration Rate of Cucumber Plants under Varying Environmental Conditions (환경 변화에 따른 오이의 호흡속도에 관한 수리적 모형)

  • 임준택;정현희;백선영;현규환;권병선;김학진;정순주;이범선
    • Journal of Bio-Environment Control
    • /
    • v.9 no.4
    • /
    • pp.185-192
    • /
    • 2000
  • This study was conducted to develop mathematical model of respiration rate of cucumber plant under varying environmental conditions. 8.55% of gross photosynthesis of individual cucumber plant was used as respiration. Growth respiration coefficient was estimated as 0.0935. Maintenance respiration rate was estimated as 0.00158g CH$_2$g$^{-1}$ .h$^{-1}$ at 24$^{\circ}C$ of air temperature and it increased exponentially as air temperature became higher. Respiration rate decreased poportionally as content of storage carbohydrate became lower. Ion uptake respiration rate of roots was estimated as 0.6648g C$H_2O$.(gN)$^{-1}$ .

  • PDF

Effects of Teaching Based on Driver's Conceptual Change Model on Rectifying High School Students' Misconception of Photosynthesis and Respiration (Driver의 개념변화 학습 모형을 적용한 수업이 고등학생들의 식물의 광합성과 호흡의 오개념 교정에 미치는 효과)

  • Kim, Dong-Ryeul
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.6
    • /
    • pp.712-729
    • /
    • 2009
  • This study aims to research high school students' misconception of botanic photosynthesis and respiration, and as the measure of rectifying the misconception, to develop the teaching program based on Driver's conceptual change model, applying it to classes and observing the effect. Selected as the research subject was sixty-six students in 1st year of a highschool located in Busan who had chosen Biology Learning as discretionary subject, with their conceptual level on botanic photosynthesis and respiration researched through tests in drawing and descriptive writing. As a consequence of applying drawing as a way of classifying the levels of students' misconception on photosynthesis and respiration, many students' drawings included their misconception caused by textbooks or scientists, but after application of Driver's conceptual change model, they drew scientific drawings including the fundamental factors of botanic photosynthesis and respiration such as light, carbon dioxide, water, glucose, oxygen, leaf, chloroplast, mitochondria, stoma, and energy. Likewise, as a result of the descriptive writing test implemented for researching the students' conception on the various aspects of botanic photosynthesis and respiration, many students in the pretest showed misconception on the point of time and location at which botanic photosynthesis and respiration occur, botanic nutrient, the role of a leaf in photosynthesis, and the relation between botanic photosynthesis and respiration, but after teaching based on Driver's conceptual change model, their misconceptions on photosynthesis and respiration were rectified to a high degree.

Predicting Respiration Rate of Pear in film package of Selective gas permeation (기체 투과 선택성 포장 필름 내 배 호흡현상 예측)

  • Sim, Seung-Woo;Ryu, Dong-Wan;Park, Chan-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.105-112
    • /
    • 1999
  • Model predicting the respiration rate of pear under modified LDPE film pouch has been developed. The assumptions of the model have three bases; 1) respiration rate is depending on $CO_2$ and $O_2$ concentration in the package, 2) the oxidation of glucose in pear generates carbon dioxides, and 3) gases permeation through the package film bases on the Langmuir adsorption theory and Fick's law. The simulated results agreed fairly well with the experimental data so as this model to be useful in designing the modified atmospheric packaging system.

  • PDF

Heart beat and Respiration Detection Performance of CW radar Based on New Signal Model (새로운 신호모델에 의한 CW 레이다 심장박동 및 호흡검출 성능분석)

  • Lee, Byung-Seub
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.1
    • /
    • pp.28-33
    • /
    • 2017
  • In this paper, new signal model for bio-signal detection, i.e heart beat and respiration, using CW radar. Most research on this similar topic are based on the conventional signal model which is not correct in envisaging reflected signal from the human body. The system developed based on this conventional model can not predict exact performance of the system. So in this paper modified signal model for bio-radar is proposed and then simulation for detecting heartbeat and respiration signal in AWGN, multipath environment. The detection performance difference between two signal models are discussed.the modified

Classification of Respiratory States based on Visual Information using Deep Learning (심층학습을 이용한 영상정보 기반 호흡신호 분류)

  • Song, Joohyun;Lee, Deokwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.296-302
    • /
    • 2021
  • This paper proposes an approach to the classification of respiratory states of humans based on visual information. An ultra-wide-band radar sensor acquired respiration signals, and the respiratory states were classified based on two-dimensional (2D) images instead of one-dimensional (1D) vectors. The 1D vector-based classification of respiratory states has limitations in cases of various types of normal respiration. The deep neural network model was employed for the classification, and the model learned the 2D images of respiration signals. Conventional classification methods use the value of the quantified respiration values or a variation of them based on regression or deep learning techniques. This paper used 2D images of the respiration signals, and the accuracy of the classification showed a 10% improvement compared to the method based on a 1D vector representation of the respiration signals. In the classification experiment, the respiration states were categorized into three classes, normal-1, normal-2, and abnormal respiration.

Impacts of temperature variations on soil organic carbon and respiration at soil erosion and deposition areas

  • Thet Nway Nyein;Dong Kook Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.447-447
    • /
    • 2023
  • Soil organic carbon (SOC) is a critical indicator of soil fertility. Its importance in maintaining ecological balance has received widespread attention. However, global temperatures have risen by 0.8℃ since the late 1800s due to human-induced greenhouse gas emissions, resulting in severe disruptions in SOC dynamics. To study the impacts of temperature variations on SOC and soil respiration, we used the Soil Carbon and Landscape co-Evolution (SCALE) model, which was capable of estimating the spatial distribution of soil carbon dynamics. The study site was located at Heshan Farm (125°20'10.5"E, 49°00'23.1"N), Nenjiang County in Heilongjiang Province, Northeast China. We validated the model using observed soil organic carbon and soil respiration in 2015 and achieved excellent agreement between observed and modeled variables. Our results showed considerable influences of temperature increases on SOC and soil respiration rates at both erosion and deposition areas. In particular, changes in SOC and soil respiration at the deposition area were greater than at the erosion area. Our study highlights that the impacts of temperature elevations are considerably dependent on soil erosion and deposition processes. Thus, it is important to implement effective soil conservation strategies to maintain soil fertility under global warming.

  • PDF

Simultaneous Blockage of Epidermal Growth Factor Receptor and Cyclooxygenase-2 in a Human Xenotransplanted Lung Cancer Model

  • Mu, Xiao-Yan;Dong, Xue-Li;Sun, Jie;Ni, Yu-Hua;Dong, Zhang;Li, Xi-Li;Sun, Er-Lian;Yi, Zhou;Li, Gao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.69-73
    • /
    • 2014
  • The effects of erlotinib combined with celecoxib in a lung cancer xenograft model were here explored with a focus on possible mechanisms. A xenotransplanted lung cancer model was established in nude mice using the human lung cancer cell A549 cell line and animals demonstrating tumour growth were randomly divided into four groups: control, erlotinib, celecoxib and combined (erotinib and celecoxib). The tumor major axis and short diameter were measured twice a week and after 40 days tissues were collected for immunohistochemical analyses of Bcl-2 and Bax positive cells and Western-blotting analyses for the epidermal growth factor recepto (EGFR), P-EGFR, and cyclooxygenase-2 (COX-2). Tumor size in the combined group was smaller than in the others (p<0.01) and the percentage of Bcl-2 positive cells was fewer in most cases (p<0.01), while that of Bax positive cells was greater than in the erlotinib and celecoxib groups (P>0.05). Western blotting showed decreased expression of P-EGFR and COX-2 with both erlotinib and celecoxib treatments, but most pronouncedly in the combined group (P<0.05). Simultaneous blockage of the EGFR and COX-2 signal pathways exerted stronger growth effects in our human xenotransplanted lung cancer model than inhibition of either pathway alone. The anti-tumor effects were accompanied by synergetic inhibition of tumor cell apoptosis, activation of p-EGFR and expression of COX-2.

Simulating the Gross Primary Production and Ecosystem Respiration of Estuarine Ecosystem in Nakdong Estuary with AQUATOX (AQUATOX 모델을 이용한 낙동강 하구역의 총일차생산량 및 생물체 호흡량 예측 모델링)

  • Lee, Taeyoon;Hoang, Thilananh;Nguyen, Duytrinh;Han, Kyongsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.3
    • /
    • pp.15-29
    • /
    • 2021
  • The purpose of this study is to establish an ecosystem model that can predict ecosystem fluctuations in the Nakdong estuary, and use this model to calculate total primary production and respiration. AQUATOX model was used as the ecosystem model, and the model was calibrated and verified using the measured data. For the calibration of the model, chlorophyll-a data measured at the Nakdong estuary were used, and the model verification was performed using DO, TN, and TP data. In general, the total primary production and respiration volume vary greatly depending on the season, but the total primary production and respiration in the Nakdong estuary were greatly influenced by the amount of water discharged from Nakdong estuary bank. When the amount of effluent increased, photosynthesis could not be performed due to the loss of phytoplankton living in the lower area, and the total primary production amounted to zero, whereas the respiration increased sharply due to the inflow of organic substances contained in the effluent. The increase in the inflow water means the inflow of organic substances contained in the inflow water, and the organic substances are decomposed by oxidation, reducing dissolved oxygen. Compared with other countries' estuaries, the Nakdong estuary shows the lowest total primary production and because the respiration is larger than the total primary production, the dissolved oxygen is depleted by the oxidation of organic matter.

High-Resolution Numerical Simulation of Respiration-Induced Dynamic B0 Shift in the Head in High-Field MRI

  • Lee, So-Hee;Barg, Ji-Seong;Yeo, Seok-Jin;Lee, Seung-Kyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.1
    • /
    • pp.38-45
    • /
    • 2019
  • Purpose: To demonstrate the high-resolution numerical simulation of the respiration-induced dynamic $B_0$ shift in the head using generalized susceptibility voxel convolution (gSVC). Materials and Methods: Previous dynamic $B_0$ simulation research has been limited to low-resolution numerical models due to the large computational demands of conventional Fourier-based $B_0$ calculation methods. Here, we show that a recently-proposed gSVC method can simulate dynamic $B_0$ maps from a realistic breathing human body model with high spatiotemporal resolution in a time-efficient manner. For a human body model, we used the Extended Cardiac And Torso (XCAT) phantom originally developed for computed tomography. The spatial resolution (voxel size) was kept isotropic and varied from 1 to 10 mm. We calculated $B_0$ maps in the brain of the model at 10 equally spaced points in a respiration cycle and analyzed the spatial gradients of each of them. The results were compared with experimental measurements in the literature. Results: The simulation predicted a maximum temporal variation of the $B_0$ shift in the brain of about 7 Hz at 7T. The magnitudes of the respiration-induced $B_0$ gradient in the x (right/left), y (anterior/posterior), and z (head/feet) directions determined by volumetric linear fitting, were < 0.01 Hz/cm, 0.18 Hz/cm, and 0.26 Hz/cm, respectively. These compared favorably with previous reports. We found that simulation voxel sizes greater than 5 mm can produce unreliable results. Conclusion: We have presented an efficient simulation framework for respiration-induced $B_0$ variation in the head. The method can be used to predict $B_0$ shifts with high spatiotemporal resolution under different breathing conditions and aid in the design of dynamic $B_0$ compensation strategies.