• Title/Summary/Keyword: Respirable dust

Search Result 89, Processing Time 0.024 seconds

A Study of Heavy Metal Pollutants in the Respirable Dust in Seoul Area (호흡성분진중의 중금속 오염도에 관한 조사연구)

  • Lim, Young-Wook;Chung, Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.68-78
    • /
    • 1989
  • The heavy metal of suspended particulates with human health has long been studied in environmental interest concerned. This study was intended to identify harmful heavy metals of the ambient air borne dusts which were related with the respirable sizes in the aerodynamics. Two sampling sites were selected comparatively; one was in the Shinchon area, which is the commercial district with heavy traffic and the other site was in the Bulgwang area which is residential area. The supended particulates were sampled by high volume air sample with 6 cascade impactor stages. The heavy metals in terms of As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, V and Zn were determined by stomic absorption spectrometry or inductively coupled plasma emission spectrometry. The samples weretaken bimothly for seven consecutive days from May 1987 to March 1988. The annual average concentration of the respirable suspended dust of which diameter is less than 10$\mum$ was 152.59 $\mug/m^3$ of the Shinchon air samples; the respirable dust was equivalent to approximately 85% of the total suspended particulates. The annual average concentration of the respirable suspended dust of the Bulgwang air samples was 112.56 $\mug/m^3$; that was approximately 86% of the total suspended particulates. The concentration of heavy metals was investigated in relation to the particle size. The concentration of Cr, Fe, Mn and V were tended to be much more in the coarse particles than in the fine particles. Cd and Pb in the fine particles were more than in the coarse particles. In the partial correlation coefficients; in the Shinchon area, high correlations among Fe, Se and Mn were determined; it is assumed that those sources would be originated from coal, gasolineand diesel. In Bulgwang area, would be high correlation among Fe, Se, Hg and Mn considered to be originated from coal, Bunker-C and heavy oil as well. From the above results, the hazardous heavy merals in air should be measured and controlled in originally their sources.

  • PDF

Field Study of Concentrations and Emissions of Particulate Contaminants by Types of Swine Houses in Korea (돈사 작업장 유형에 따른 입자상 오염물질의 실내농도 및 발생량에 관한 현장 조사)

  • Kim, Ki-Yeon;Park, Jae-Beom;Kim, Chi-Nyon;Lee, Kyung-Jong
    • Journal of Preventive Medicine and Public Health
    • /
    • v.38 no.2
    • /
    • pp.141-146
    • /
    • 2005
  • Objectives: Particulate contaminants, such as total and respirable dusts, can harm the health of farm workers via several routes. The principal aims of this field study were to determine the concentrations and emissions of particulate contaminants: total and respirable dusts, in the different types of swine houses used in Korea, and allow objective comparison between Korea and the other countries in terms of swine housing types. Methods: The swine houses investigated in this research were selected with respect to three criteria: the manure removal system, ventilation mode and growth stage of pigs. Measurements of total and respirable dust concentrations and emissions in the swine houses were carried out on 5 housing types at 15 different farm sites per housing type. The swine houses investigated were randomly selected from farms situated within the central districts in Korea: province of Kyung-gi, Chung-buk and Chung-nam. Results: The total and respirable dust concentrations in the swine houses averaged $1.88\;and\;0.64mg/m^3$, ranging from $0.53\;to\;4.37mg/m^3$ and from $0.18\;to\;1.68mg/m^3$, respectively. The highest concentrations of total and respirable dusts were found in the swine houses with deep-litter bed systems: $2.94mg/m^3\;and\;1.14 mg/m^3$, while the lowest concentrations were found in the naturally ventilated buildings with slats: $0.83mg/m^3\;and\;0.24mg/m^3$, respectively (p<0.05). All the swine houses investigated did not exceed the threshold limit values (TLVs) for total ($10mg/m^3$) and respirable ($2.5mg/m^3$) dusts. The mean emissions of total and respirable dusts, per pig (75 kg in terms of live weight) and area ($m^2$), from the swine houses were 97.33 and 9.55 mg/h/pig and $37.14\;and\;12.83mg/h/m^2$, respectively. The swine houses with deep-litter bed systems showed the highest emissions of total and respirable dusts (p<0.05). However, the emissions of total and respirable dusts from the other swine houses were not significantly different (p>0.05). Conclusion: The concentrations and emissions of total and respirable dusts were relatively higher in the swine houses managed with deep-litter bed systems and ventilated naturally of the different swine housing types tested. In further research, more farms than the number used in this research should be investigated, which will present objective and accurate data on the concentrations and emissions of total and respirable dusts in Korean swine houses. In addition, personal sampling should be performed to objectively assess the exposure level of farm workers to particulate contaminants.

The effect of cristobalite on quantitative analysis of quartz in respirable dust by FTIR direct-on-filter method (직접필터법을 이용하여 호흡성 분진내 석영을 정량분석할 때 크리스토바라이트가 미치는 영향)

  • Phee, Young Gyu;Roh, Young-Man;Kim, Hyun Wook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.1
    • /
    • pp.21-30
    • /
    • 2007
  • To establish the Fourier-transform infra-red spectrophotometry (FTIR) direct-on-filter(DOF) technique as a useful analytical method for quartz in respirable dust samples, influence of the interference should be corrected. This study was designed to compare three methods of correction for cristobalite when quantifying the content of quartz, including the least square, the optimum choice and the spectral subtraction methods. Respirable dust, created in a dust chamber containing the standard material of quartz, cristobalite was collected using a cyclone equipped with a 25 mm, $0.8{\mu}m$ pore size DM filter as a collection medium. The quartz weights overestimated about 100% when mixed of cristobalite by measure using 799 cm-1 absorption peak of quartz. The quartz weights appeared over estimated by optimum choice, spectral subtraction and least square method in mixtures of 33% cristobalite were 90.3%, 60.1% and about 4.3%, respectively. The least square method have been adopted to correction methods of cristobalite and satisfactory results have been obtained. The results of this study suggest that, when correcting for effect of cristobalite on quantitative analysis of quartz in respirable dust by FTIR direct-on-filter method, the least square method produce the most unbiased results compared with those of other correction methods.

Effects of Spray Surfactant and Particle Charge on Respirable Coal Dust Capture

  • Tessum, Mei W.;Raynor, Peter C.
    • Safety and Health at Work
    • /
    • v.8 no.3
    • /
    • pp.296-305
    • /
    • 2017
  • Background: Surfactant-containing water sprays are commonly used in coal mines to collect dust. This study investigates the dust collection performance of different surfactant types for a range of coal dust particle sizes and charges. Methods: Bituminous coal dust aerosol was generated in a wind tunnel. The charge of the aerosol was either left unaltered, charge-neutralized with a neutralizer, or positively- or negatively-charged using a diffusion charger after the particles were neutralized. An anionic, cationic, or nonionic surfactant spray or a plain water spray was used to remove the particles from the air flow. Some particles were captured while passing through spray section, whereas remaining particles were charge-separated using an electrostatic classifier. Particle size and concentration of the charge-separated particles were measured using an aerodynamic particle sizer. Measurements were made with the spray on and off to calculate overall collection efficiencies (integrated across all charge levels) and efficiencies of particles with specific charge levels. Results: The diameter of the tested coal dust aerosol was $0.89{\mu}m{\pm}1.45$ [geometric $mean{\pm}geometric$ standard deviations (SD)]. Respirable particle mass was collected with $75.5{\pm}5.9%$ ($mean{\pm}SD$) efficiency overall. Collection efficiency was correlated with particle size. Surfactant type significantly impacted collection efficiency: charged particle collection by nonionic surfactant sprays was greater than or equal to collection by other sprays, especially for weakly-charged aerosols. Particle charge strength was significantly correlated with collection efficiency. Conclusion: Surfactant type affects charged particle spray collection efficiency. Nonionic surfactant sprays performed well in coal dust capture in many of the tested conditions.

Quantitative Analysis of Quartz, Mica, and Feldspar in Respirable Coalmine Dust in Taebaek Area by Fourier Transform Infrared Spectrophotometry (간섭식 적외선 분광기에 의한 태백지역 석탄광의 호흡성 분진 중 석영, 운모 및 장석의 정량분석)

  • Choi, Ho-Chun;Cheon, Yong-Hee;Kim, Hae-Jeong;Lee, Jeong-Joo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.21 no.2 s.24
    • /
    • pp.271-283
    • /
    • 1988
  • A Fourier transform infrared spectrophotometric method was described for the determination of quartz, mica(sericite) and feldspar(potassium feldspar) in respirable dust in Taebaek area. The results were as follows; 1) The concentration of minerals were determined from the intensity of absorption peak of quartz at $799cm^{-1}$, sericite at $539cm^{-1}$, and potassium feldspar at $648cm^{-1}$ respectively. 2) The precision(C. V. %) for the quartz determination was $7.70{\pm}2.68%$ from 10 to $200{\mu}g$ of quartz. 3) The precision for the sericite determination was $16.34{\pm}6.82%$ from 30 to $500{\mu}g$ of serictite. 4) The precision for the potassium feldspar determination was $5.28{\pm}1.74%$ from 30 to $500{\mu}g$ of potassium feldspar. 5) The concentration of respirable dust in Taebaek area was $4.90{\pm}3.29mg/m^3$ (0.4-93.7%), percent quartz was $1.80{\pm}4.14%$ (0.01-20.56%), percent sericite was $11.37{\pm}6.43%$ (0.00-29.69%), percent potassium feldspar was 8.15% (n=7, 3.41-19.70%). 6) The difference of respirable coal dust, quartz, and sericite concentrations in drilling, coal cutting, hauling and seperating was significant respectively (p<0.05).

  • PDF

Trace Metals Characterization of Respirable Dust during Yellow Sand Phenomena in Seoul Area (서울지역의 황사발생시 호흡성 분진 중 미량원소의 특성 평가)

  • 신은상;선우영
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.1
    • /
    • pp.41-51
    • /
    • 2002
  • This research was carried out using Anderson air sampler which were set up on the roof of the Engineering College of Konkuk University at Hwayang-Dong, Kwangjin-Gu, Seoul from Aug. 1992 to foul. 1999. The results are as follows: The major component of yellow sand is soil particles based upon the observation that particles ranging from $3.3~7.0{\mu}m$ occupy 36~63%. It is certain that the increase of fine particles of respirable dust during yellow sand phenomenon in Seoul area affects the human body. The trace metals from natural sources like Al, Ca, Fe, K, Na, and Si show larger mass median diameter(MMD) values during yellow sand phenomenon than in normal situations while the values of MMD for Mn and Pb rarely changes. Noticeably, the changes in value of MMD of water soluble elements like ${NO_3}^{-}$ and ${SO_4}^{2}$ are 2.3 and 6.6 times higher during the yellow sand phenomenon compared to normal situations, respectively. This fact is regarded as decisive evidence showing that ${NO_3}^{-}$ and ${SO_4}^{2}$ in the air are attached to yellow sand and move together.

Air concentration and particle size distribution of wood dust during wood-working processes (나무 종류에 따른 공기중 분진 농도와 입경 분포에 관한 연구)

  • Kim, Seung Ki;Roh, Jaehoon;Kim, Chi Nyon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.2
    • /
    • pp.145-157
    • /
    • 1999
  • Wood dust is created when machines are used to cut or shape wood materials. Industries of high risk of wood dust exposure are sawmills, dimension mills, furniture industries, and carpenters, etc. Health effects associated with wood dust exposure includes dermatitis, allergic respiratory effects and cancer. Health effects of wood dus t are mainly depend on the concentration, dust size and exposure time. This study were carried out to evaluate the concentration and particle size distribution of wood dust during working processes. The subjects of this study were 53 workers exposed to wood dust in 7 furniture factories and 5 musical instruments, and 5 sawmill factories. The average total wood dust concentrations measured by personal cascade impactor were $1.82{\pm}2.31mg/m^3$ in primary manufacture, $3.59{\pm}1.72mg/m^3$ in s econdary manufacture, $5.09{\pm}1.46mg/m^3$ in sanding operation. Mass median diameters of hardwoods dust were $3.36{\mu}m$ in primary manufacture, $4.25{\mu}m$ in secondary manufacture, $4.21{\mu}m$ in sanding operation. softwoods dust were $3.39{\mu}m$ in primary manufacture, $4.34{\mu}m$ in secondary manufacture. Particle size distributions showed a nearly the same pattern in each working processes. The sample concentration of all hardwood dust exceeded the Threshold Limit Value(TLV) and 20.8% of the softwood dust exceeded the Threshold Limit Value. The range of size distribution were $0.5-10{\mu}m$ in the soft and hardwood dust. The respirable dust of soft and hardwood took up 59% and above. Therefore new threshold limit value for wood dust should be needed in Korea. Also, it should be done for various studies on health effects related to occupational exposure of wood dust.

  • PDF

Size Distributions and Respirable Mass Fraction of Exposed Dust in Work Environment (일부 분진 작업장에서의 폭로분진의 입경분포와 호흡성 분진 비율)

  • 김영식
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.25-31
    • /
    • 1992
  • Authors Investigated the particulate size distribution in work environment of Banwol and Changwon industry complex. Size distributions of particles exposured to workers in welding and in grounding process were evaluated by personal cascade impactors. Personal air samplers with personal cascade impactor were attached to the workers. The mass median diameter measured in welding sites were 0.3 to 3.BUm and in grinding sites were 1.5 to 2.6htn. Respirable matter fractions were ranged 32.67 to 65.055. Respirable matter fractions were calculated from the sixte distribution data by the respirable particle mass of the ACGIH criteria. The study relating to characteristics of particle of other industries and particulate sixte distribution is more needed in the near future

  • PDF

Quartz Concentration and Respirable Dust of Coal Mines in Taeback and Kangneung Areas (태백 및 강릉지역 석탄광의 호흡성 분진과 석영농도에 관한 조사)

  • Choi, Ho-Chun;Cheon, Yong-Hee;Yoon, Young-No;Kim, Hae-Jeong
    • Journal of Preventive Medicine and Public Health
    • /
    • v.20 no.2 s.22
    • /
    • pp.261-269
    • /
    • 1987
  • In order to investigate working conditions of underground coal mines, this work was undertaken to evaluate the respirable dust and the concentration of quartz in Taeback and Kangneung areas. The concentration of quartz was determined by Fourier Transform Infrared Spectrophotometry. The results were as follows; 1) The concentration of respirable dust of drilling and coal face in Taeback and Kangneung areas were as followed; Arithmetic $Mean{\pm}S.D.(mg/m^3)$ Taeback Drilling: $2.00{\pm}1.56$ Taeback Coal Face: $3.74{\pm}3.14$ Kangneung Drilling: $4.55{\pm}4.51$ Kangneung Coal Face: $5.77{\pm}4.53$ Geometric $Mean{\pm}S.D.(mg/m^3)$ Taeback Drilling: $1.34{\pm}2.81$ Taeback Coal Face : $2.55{\pm}2.61$ Kangneung Drilling : $2.44{\pm}3.63$ Kangneung Coal Face: $4.24{\pm}2.37$ 2) Distribution of respirable dust was well fitted to the log-normal distribution and geometric mean value was $log^{-1}\;0.37{\pm}log^{-1}\;0.47(2.34{\pm}2.95)mg/m^3$. 3) The difference of respirable dust concentrations in Taeback and Kangneung areas was not significant statistically (p>0.05). 4) The concentration of quartz of drilling and coal face in Taeback and Kangneung areas were as followed; Arithmetic $Mean{\pm}S.D.(%)$ Taeback Drilling: $6.18{\pm}5.52$ Taeback Coal Face: $1.89{\pm}1.54$ Kangneung Drilling: $3.54{\pm}2.12$ Kangneung Coal Face: $2.05{\pm}3.37$ Geometric $Mean{\pm}S.D.(%)$ Taeback Drilling: $4.24{\pm}2.59$ Coal Face: $1.39{\pm}2.22$ Kangneung Drilling : $2.55{\pm}3.08$ Kangneung Coal Face : $1.24{\pm}2.33$ 5) Distribution of quartz concentrations was well fitted to the log-normal distribution and geometric mean value was $log^{-1}\;0.33{\pm}log^{-1}\;0.45(2.14{\pm}2.82)%$. 6) The difference of quartz concentrations in Taeback and Kangneung areas was not significant (p>0.05), but significant at drilling sites and coal faces (p<0.05).

  • PDF

Analysis of Dust Concentration in Dairy Farm according to Sampling Location and Working Activities (유우사 내부 위치 및 작업 형태에 따른 분진 모니터링 및 분석)

  • Park, Gwanyong;Kwon, Kyeong-Seok;Lee, In-bok;Ha, Taehwan;Kim, Rack-Woo;Lee, Minhyung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.3
    • /
    • pp.71-81
    • /
    • 2017
  • Organic dust generated inside livestock facilities includes toxic organic matters such as bacteria and endotoxin. Dust can cause respiratory disease for worker and livestock, and consequently, degradation of welfare and productivity. Influence of dust on livestock workers has been studied since the 1970s. However, exposure limit for cattle farmer has not been established, unlike exposure limit for pig and poultry farmer. Furthermore, study on air quality inside livestock facility, especially inside dairy farm has been rarely conducted in Korea. In this study, dust concentration of TSP, PM10, inhalable and respirable dust has been monitored in the commercial dairy house according to location and working activities. Bedding material inside the stall was one of the major sources of dust. The amount of dust was related to water content level of the bedding material. Dust concentration was relatively high in leeward location, and the highest concentration was measured during TMR mixing process. The maximum value of inhalable dust concentration was 29.1 times higher than the reference value as fine particles drop to the TMR mixer. Dust generated by TMR mixing was presumed to decrease by adjusting moisture and drop height of feed.