• Title/Summary/Keyword: Resource management scheme

Search Result 313, Processing Time 0.025 seconds

Task Scheduling and Resource Management Strategy for Edge Cloud Computing Using Improved Genetic Algorithm

  • Xiuye Yin;Liyong Chen
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.450-464
    • /
    • 2023
  • To address the problems of large system overhead and low timeliness when dealing with task scheduling in mobile edge cloud computing, a task scheduling and resource management strategy for edge cloud computing based on an improved genetic algorithm was proposed. First, a user task scheduling system model based on edge cloud computing was constructed using the Shannon theorem, including calculation, communication, and network models. In addition, a multi-objective optimization model, including delay and energy consumption, was constructed to minimize the sum of two weights. Finally, the selection, crossover, and mutation operations of the genetic algorithm were improved using the best reservation selection algorithm and normal distribution crossover operator. Furthermore, an improved legacy algorithm was selected to deal with the multi-objective problem and acquire the optimal solution, that is, the best computing task scheduling scheme. The experimental analysis of the proposed strategy based on the MATLAB simulation platform shows that its energy loss does not exceed 50 J, and the time delay is 23.2 ms, which are better than those of other comparison strategies.

Resource Management Scheme for Improvement of Reliability and Connectivity in wireless USB System (무선 USB 시스템에서 신뢰성과 연결성 향상을 위한 자원 관리 기법)

  • Kim, Jin-Woo;Jeong, Min-A;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.1159-1166
    • /
    • 2014
  • In this paper, a resource management scheme for enhancing the network connectivity and reliability in wireless USB system is proposed. Wireless USB protocol is suitable for the application that supports the real-time multimedia service in Ship Area Network since it supports high speed data transfer. However, the device's mobility is caused the dramatic change of link state and network topology, and is occurred the degradation of network performance. Therefore, a resource management scheme for wireless USB system is proposed in this paper. The proposed technique can intelligently treat the change of link state, and solve the degradation of network performance. The simulation results show that proposed protocol can enhance the throughput and delay performance by selecting relay device with better link state.

Efficient Access Management Scheme for Machine Type Communications in LTE-A Networks (LTE-A 네트워크 환경에서 MTC를 위한 효율적인 접근관리 기법)

  • Moon, Jihun;Lim, Yujin
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.1
    • /
    • pp.287-295
    • /
    • 2017
  • Recently, MTC (Machine Type Communication) is known as an important part to support IoT (Internet of Things) applications. MTC provides network connectivities between MTC devices without human intervention. In MTC, a large number of devices try to access over communication resource with a short period of time. Due to the limited communication resource, resource contention becomes severe and it brings about access failures of devices. To solve the problem, it needs to regulate device accesses. In this paper, we present an efficient access management scheme. We measure the number of devices which try to access in a certain time period and predict the change of the number of devices in the next time period. Using the predicted change, we control the number of devices which try to access. To verify our scheme, we conduct experiments in terms of success probability, failure probability, collision probability and access delay.

Resource Allocation based on Quantized Feedback for TDMA Wireless Mesh Networks

  • Xu, Lei;Tang, Zhen-Min;Li, Ya-Ping;Yang, Yu-Wang;Lan, Shao-Hua;Lv, Tong-Ming
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.3
    • /
    • pp.160-167
    • /
    • 2013
  • Resource allocation based on quantized feedback plays a critical role in wireless mesh networks with a time division multiple access (TDMA) physical layer. In this study, a resource allocation problem was formulated based on quantized feedback for TDMA wireless mesh networks that minimize the total transmission power. Three steps were taken to solve the optimization problem. In the first step, the codebook of the power, rate and equivalent channel quantization threshold was designed. In the second step, the timeslot allocation criterion was deduced using the primal-dual method. In the third step, a resource allocation scheme was developed based on quantized feedback using the stochastic optimization tool. The simulation results show that the proposed scheme not only reduces the total transmission power, but also has the advantage of quantized feedback.

  • PDF

An efficient session management scheme for low-latency communications in 5G systems

  • Kim, Jae-Hyun;Kim, Seog-Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.83-92
    • /
    • 2020
  • In this paper, we propose an efficient session management scheme for low-latency communications in 5G systems. The main idea of the proposed scheme is to prevent unnecessary reattempt signalling overhead when the session establishment for low-latency communications fails. Also, this method avoids network resource waste and battery drain of mobile devices. If a UE(User Equipment) fails to establish an Always-on PDU session for low-latency communications with the 5G systems because of network failure or resource unavailability, the proposed method prevents the UE's re-establishment of the Always-on PDU session by the specific information in the NAS(Non-Stratum) message from the 5G systems. Through simulation, we show that the proposed efficient session management scheme (ESMS) minimizes unnecessary signalling overhead and improves battery efficiency of mobile devices compared to existing legacy mechanism in 5G systems.

A Dual-Population Memetic Algorithm for Minimizing Total Cost of Multi-Mode Resource-Constrained Project Scheduling

  • Chen, Zhi-Jie;Chyu, Chiuh-Cheng
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.2
    • /
    • pp.70-79
    • /
    • 2010
  • Makespan and cost minimization are two important factors in project investment. This paper considers a multi-mode resource-constrained project scheduling problem with the objective of minimizing costs, subject to a deadline constraint. A number of studies have focused on minimizing makespan or resource availability cost with a specified deadline. This problem assumes a fixed cost for the availability of each renewable resource per period, and the project cost to be minimized is the sum of the variable cost associated with the execution mode of each activity. The presented memetic algorithm (MA) consists of three features: (1) a truncated branch and bound heuristic that serves as effective preprocessing in forming the initial population; (2) a strategy that maintains two populations, which respectively store deadline-feasible and infeasible solutions, enabling the MA to explore quality solutions in a broader resource-feasible space; (3) a repair-and-improvement local search scheme that refines each offspring and updates the two populations. The MA is tested via ProGen generated instances with problem sizes of 18, 20, and 30. The experimental results indicate that the MA performs exceptionally well in both effectiveness and efficiency using the optimal solutions or the current best solutions for the comparison standard.

MIMO-aided Efficient Communication Resource Scheduling Scheme in VDES

  • Sung, Juhyoung;Cho, Sungyoon;Jeon, Wongi;Park, Kyungwon;Ahn, Sang Jung;Kwon, Kiwon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2736-2750
    • /
    • 2022
  • As demands for the maritime communications increase, a variety of functions and information are required to exchange via elements of maritime systems, which leads communication traffic increases in maritime frequency bands, especially in VHF (Very High Frequency) band. Thus, effective resource management is crucial to the future maritime communication systems not only to the typical terrestrial communication systems. VHF data exchange system (VDES) enables to utilize more flexible configuration according to the communication condition. This paper focuses on the VDES communication system among VDES terminals such as shore stations, ship stations and aids to navigation (AtoN) to address efficient resource allocation. We propose a resource management method considering a MIMO (Multiple Input Multiple Output) technique in VDES, which has been widely used for modern terrestrial wireless networks but not for marine environments by scheduling the essential communication resources. We introduce the general channel model in marine environment and give two metrics, spectral and the energy efficiencies to examine our resource scheduling algorithm. Based on the simulation results and analysis, the proposed method provides a possibility to enhance spectral and energy efficiencies. Additionally, we present a trade-off relationship between spectral and energy efficiencies. Furthermore, we examine the resource efficiencies related to the imperfect channel estimation.

Design and Implementation of a TMN Agent Platform based on a Multi-thread Parallel Processing Architecture (멀티쓰레드 기반 병렬처리 구조를 이용한 TMN 에이젼트 플랫폼 설계 및 구현)

  • Kim, Seong-U;Kim, Yeong-Tak
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.5 no.6
    • /
    • pp.793-800
    • /
    • 1999
  • TMN Agent Platform은 망 요소의 운영상태와 자원들을 GDMO에 따라 관리객체(Managed Object : MO)로 모델링 하고, 자원들의 현재 상태를 유지하며, 관리자(Manager)로부터의 망 관리 기능 요구에 따라 조작된다. 그러므로, 에이전트의 성능향상은 전체적인 통신망 관리의 성능향상에 직접적인 영향을 미친다.본 논문에서는 TMN 에이전트의 기능요구 사항을 분석하고, 이를 토대로 성능향상을 위해 멀티스레드 기법을 사용하는 병렬 처리 구조의 TMN Agent Platform의 기능구조를 제시한다. 또한 에이전트와 다양한 자원들간의 효율적인 메시지전달을 위한 체계를 제시하며, 구현된 TMN Agent Platform의 성능을 분석한다.Abstract TMN Agent manages the operational status and real-resources of network elements, such as switching nodes and transmission systems. It performs the requested management functions from manager and maintains consistent status data of real-resource. The performance of agent system affects directly the performance of network management operation. If the agent is implemented by sequential processing scheme with single process, the agent processing can be delayed or blocked according to the status of real-resources. This problem can be solved by parallel and distributed processing scheme.To improve the processing performance of TMN Agent, we propose a TMN Agent Platform's functional architecture that is based on parallel processing with multi-tread and effective message transferring scheme between agent and various real-resource. We analyze the performance of the implemented TMN Agent Platform.

Adaptive Frequency Resource Allocation For FFR Based Femtocell Network Environment (FFR 기반의 Femtocell 네트워크를 위한 적응 주파수 자원 할당 방법)

  • Bae, Won-Geon;Kim, Jeong-Gon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7B
    • /
    • pp.505-516
    • /
    • 2012
  • According to distribute of resource of macro cell and reduce distance between transmitter and receiver, Femto cell system is promising to provide costeffective strategy for high data traffic and high spectral efficient services in future wireless cellular system environment. However, the co-channel operation with existing Macro networks occurs some severe interference between Macro and Femto cells. Hence, the interference cancellation or management schemes are imperative between Macro and Femto cells in order to avoid the decrease of total cell throughput. First, we briefly investigate the conventional resource allocation and interference cancellation scheme between Macro and Femto cells. So we found that cell throughput and frequency reuse ware decreased Then, we propose an adaptive resource allocation scheme based on the distribution of Femtocell traffic in order to increase the cell throughput and also maximize the spectral efficiency over the FFR (Fractional Frequency Reuse) based conventional resource allocation schemes. Simulation Results show that the proposed scheme attains a bit similar SINR (Signal to Interference Noise Ratio) distribution but achieves much higher total cell throughput performance distribution over the conventional resource allocation schemes for FFR and future IEEE 802.16m based Femtocell network environment.

Adaptive Partitioning based Downlink Call Admission Control in 3G LTE (3G LTE의 Adaptive Partitioning 기반 다운링크 호 수락제어 방식)

  • Jun, Kyung-Koo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6A
    • /
    • pp.565-572
    • /
    • 2007
  • 3G Long Term Evolution (3G LTE) is a next generation cellular networks system capable or providing various mobile multimedia services by using OFDMA and MIMO based radio access technology. Among many differences from existing WCDMA based systems, the facts that 3G LTE uses Physical Resource Block (PRB) as its radio resources and provides all services through the PS domain make the development of new resource management schemes necessary. This paper proposes an adaptive partitioning based downlink call admission control scheme. It separates realtime call requests from non-realtime ones, specifies maximum allowable resource amounts for each type, but if the maximum is exceeded, call requests are accepted with probability proportional to remaining resource amounts. Despite the fact that such adaptive concept has been already adopted by other call admission schemes, the contributions of our paper, which are that we are able to find an efficient way to apply the proposed scheme exploiting PRB characteristics and measure the resource usage of base stations by PRB utilization and payload ratio, are still valid. When judging from simulation results in comparison with others, our scheme is able to prioritize realtime call requests over non-realtime ones, and at the same time, overall system performance is superior.