• Title/Summary/Keyword: Resource Dependent Processing Times

Search Result 3, Processing Time 0.019 seconds

Strong NP-completeness of Single Machine Scheduling with Resource Dependent Release Times and Processing Times (Release와 Processing time이 투입자원에 종속적인 단일설비 일정계획문제의 Strong NP-completeness 분석)

  • Lee, Ik Sun
    • Korean Management Science Review
    • /
    • v.31 no.2
    • /
    • pp.65-70
    • /
    • 2014
  • This paper considers a single machine scheduling problem to determine release and processing times where both the release times and processing times are linearly decreasing functions of resources. The objective is to minimize the sum of the associated resource consumption cost and scheduling cost including makespan, sum of completion times, maximum lateness, or sum of lateness. This paper proves that the scheduling problem is NP-hard in the strong sense even if the release times are constant.

Particle-Size Distribution Dependent upon Crushing Mechanism and Crushing Circuit (파쇄 메카니즘과 파쇄회로에 따른 입도분포)

  • Choi, Do-Young;Kim, Wan-Tae;Kim, Sang-Bae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.297-303
    • /
    • 2010
  • We report the particle-size distribution and comminution charactersitics of dolomite depending upon crushing equipment (hammer crusher and roll crusher) and crushing circuit (open and closed). The quantity of fine particles (< 100 mesh) produced by hammer crusher was 34 wt.% which is about three times that by roll crusher. The quantity of 14~25 mesh size fraction by roll crusher was 20 wt.% higher than that produced by hammer crusher. 80 wt.% of the crushing products by hammer crushing was under 35 mesh in size, while the particles produced by roll crushing were relatively coarse. The particle size of both the hammer and roll crushers decreased by employing closed crusing circuit in comparison to open circuit. Products of required particle-size were obtained effectively depending on appropriate crushing equipment and crushing circuit.

Estimation of Moisture Content in Comminuted Miscanthus based on the Intensity of Reflected Light

  • Cho, Yongjin;Lee, Dong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.296-304
    • /
    • 2015
  • Purpose: The balance between miscanthus production and its cost effectiveness depends greatly on its moisture content during post processing. The objective of this research was to measure the moisture content using a non-destructive and non-contact methodology for in situ applications. Methods: The moisture content of comminuted miscanthus was controlled using a closed chamber, a humidifier, a precision weigher, and a real-time monitoring software developed in this research. A CMOS sensor equipped with $50{\times}$ magnifier lens was used to capture magnified images of the conditioned materials with moisture content level from 5 to 30%. The hypothesis is that when light is incident on the comminuted particles in an inclined manner, higher moisture content results in light being reflected with a higher intensity. Results: A linear regression analysis for an initiative hypothesis based on general histogram analysis yielded insufficient correlations with low significance level (<0.31) for the determination coefficient. A significant relationship (94% confidence level) was determined at level 108 in a reverse accumulative histogram proposed based on a revised hypothesis. A linear regression model with the value at level 108 in the reverse accumulative histogram for a magnified image as the independent variable and the moisture content of comminuted miscanthus as the dependent variable was proposed as the estimation model. The calibrated linear regression model with a slope of 92.054 and an offset of 32.752 yielded 0.94 for the determination coefficient (RMSE = 0.2%). The validation test showed a significant relationship at the 74% confidence level with RMSE 6.4% (n = 36). Conclusions: To compensate the inconsistent significance between calibration and validation, an estimation model robust against various systematic interferences is necessary. The economic efficiency of miscanthus, which is a promising energy resource, can be improved by the real-time measurement of its crucial material properties.