• Title/Summary/Keyword: Resonator Frequency

Search Result 807, Processing Time 0.037 seconds

Design and Fabrication of a Active Resonator Oscillator for Local Oscillator in ISM Band(5.8GHz) (5.8GHz ISM대역 국부 발진기용 능동 공진 발진기 설계 및 제작)

  • 신용환;임영석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.886-893
    • /
    • 2004
  • In this paper, active resonator oscillator using active band pass filter with gain, active resonator with negative resistance using transistor(agilent ATF-34143) is designed and fabricated. Proposed active resonator oscillator for local oscillator in ISM band(5.8GHz) is designed with 5.5 GHz oscillation frequency. Designed active resonator oscillator implemented on the substrate which has the relative dielectric constant of 3.38, the height of 0.508mm, and metal thickness of 0.018mm. Active resonator oscillators using active band pass filter with gain show the oscillation frequency of 5.6GHz with the output power of -2dBm and phase noise of -81dBc/Hz at the offset frequency of 100kHz. Active resonator oscillators active resonator with negative resistance show the oscillation frequency of 5.6, 5.8GHz with the output power of -4dBm and phase noise of -91dBc/Hz at the offset frequency of 100kHz.

A Design of Improved Ring Resonator (개선된 링구조 공진기 설계 및 제작)

  • 홍상준;하성재;이영준;박병규;김창범;이근태;안창돈;홍의석
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.136-140
    • /
    • 2002
  • In this paper, newly constructed 5.6 ㎓ ring resonator by using a T-Junction and a parallel transmission line. The resonator's size reduced twice more than a current ring and a hair-pin resonator at this paper's center frequency The loaded Q value is 240∼250 at center frequency. also, It was explained by RLC equivalent equation for the resonator.

  • PDF

A Frequency Tunable Double Band-Stop Resonator with Voltage Control by Varactor Diodes

  • Wang, Yang;Yoon, Ki-Cheol;Lee, Jong-Chul
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.159-163
    • /
    • 2016
  • In this paper, a frequency tunable double band-stop resonator (BSR) with voltage control by varactor diodes is suggested. It makes use of a half-wavelength shunt stub as its conventional basic structure, which is replaced by the distributed LC block. Taking advantage of the nonlinear relationship between the frequency and electrical length of the distributed LC block, a dual-band device can be designed easily. With two varactor diodes, the stop-band of the resonator can be easily tuned by controlling the electrical length of the resonator structure. The measurement results show the tuning ranges of the two operating frequencies to be 1.82 GHz to 2.03 GHz and 2.81 GHz to 3.03 GHz, respectively. The entire size of the resonator is $10mm{\times}11mm$, which is very compact.

The Limitation and Applicabilitity of Helmholtz Resonator, Regarding as Equivalent Single-Degree of Vibration System (1자유도 등가 진동계로 이해하는 헬름홀츠 공명기 특성의 한계점과 응용)

  • 하상태;김양한
    • Journal of KSNVE
    • /
    • v.4 no.2
    • /
    • pp.209-219
    • /
    • 1994
  • Classical method calculates the resonance frequency of Helmholtz resonator by postulating that there is a moving mass in neck and a stiffness which expresses the compressibility of cavity. This has been widely accepted as reasonable to determine the resonant frequency, provided that the wave length of interest is longer that any length scale of resonater. Nevertheless, it has been often recognized that this classical method sometimes does not well predict the resonant frequency. This paper decribes the way in which the dynamics of resonator very often does care about the detail geometries of resonator; location of the neck, diameter ratio of the neck to that of cavitty, length of resonator compared with that of neck, etc. This rather unexpected observations have been proved theoretically; 3 dimensional analysis of acoustic wave equation, as well as experimentally by comparing the resonant frequencies, transmission loss, and insertion loss of resonator.

  • PDF

Tension Control Tunable Carbon Nanotube Resonator (장력제어를 통한 가변형 탄소나노튜브 공진기에 대한 연구)

  • Choi, Tae Ho;Lee, Jun Ha
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.63-66
    • /
    • 2013
  • Carbon Nanotube have been proposed for use in various applications for electromechanical systems. Nano-electromechanical resonators which provide high frequency resolution and long energy storage time, play an important role in wide area fields of science and engineering. Using the control of tension in carbon nanotube, can be made the tunable resonator. In the study, we analysis the tunable frequency change of resonator by tension changes due to the rotation angles of the single-walled carbon nanotube resonator. The frequency characteristics of a resonator as a function of the rotation angle. The tension was found to decrease with increasing rotation angle, and therefore the resonance frequencies could be changed by controlling the single-walled carbon nanotube rotation angle. The resonance frequencies decreased with increasing angle, and when the rotation angle was greater than $60^{\circ}$, these changes were marked.

Surface elasticity-based modeling and simulation for dynamic and sensing performances of nanomechanical resonators

  • Kilho Eom
    • Advances in nano research
    • /
    • v.14 no.3
    • /
    • pp.285-294
    • /
    • 2023
  • The dynamic and sensing performances of nanomechanical resonators with their different boundary conditions are studied based on surface elasticity-based modeling and simulation. Specifically, the effect of surface stress is included in Euler-Bernoulli beam model for different boundary conditions. It is shown that the surface effect on the intrinsic elastic property of nanowire is independent of boundary conditions, while these boundary conditions affect the frequency behavior of nanowire resonator. The detection sensitivity of nanowire resonator is remarkably found to depend on the boundary conditions such that double-clamping boundary condition results in the higher mass sensitivity of the resonator in comparison with simple-support or cantilever boundary condition. Furthermore, we show that the frequency shift of nanowire resonator due to mass adsorption is determined by its length, whereas the frequency shift is almost independent of its thickness. This study enables a design principle providing an insight into how the dynamic and sensing performances of nanomechanical resonator is determined and tuned.

Design and Implementation of the new structural VCO with improved tuning range (Tuning range 개선을 위한 새로운 구조의 VCO 설계 및 제작)

  • Kang, Dong-Jin;Kim, Dong-Ok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.293-297
    • /
    • 2009
  • In this thesis, design of a VCO(Voltage controlled Oscillator) with a novel tuning mechanism is presented for the Radar system. This circuit, the 9.5 GHz oscillator is designed and implemented by restructuring microstrip resonator to raise Q value and to require a wide frequency tuning range. This product is fabricated on 2.6 Teflon substrate and device is NE722S01. In this paper, The new microstrip resonator VCO is proposed to achieve the characteristic of a wide frequency tuning range. This microstrip resonator VCO shows the phase noise characteristic of -108.3 dBc/Hz at 1 MHz offset from the fundamental frequency, the output power of 5.7 dBm and the second harmonic suppression of -38 dBc for the VCO are obtained. The manufacture VCO shows a frequency tuning range of 193.8 MHz. The proposed micro trip resonator VCO can be used for X-band Radar System with required tuning range.

  • PDF

A Study on Characteristics of Frequency Tunable Resonator using the Donut Type Defected Ground Structure (도넛형 결함접지면 구조를 이용한 주파수 가변 공진기 특성 연구)

  • Kim, Girae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.4
    • /
    • pp.59-64
    • /
    • 2009
  • In this paper, we represent characteristics and equivalent circuit of donut type resonator of defected ground structure (DGS), and can control resonant frequency with chip capacitor. In General, DGS operates like with parallel LC resonator. We found out variation of resonance frequency when capacitor is placed on slot of DGS. If the chip capacitor replace with varactor diode, the resonance frequencies can be controlled by voltage. This tualable resonator can apply to voltage controlled oscillator and tunable bandpass filter.

  • PDF

Design of a Helmholtz Resonator for Noise Reduction in a Duct Considering Geometry Information: Additional Relationship Equation and Experiment (형상 정보를 고려한 덕트 소음 저감용 헬름홀츠 공명기 설계: 추가 관계식과 실험)

  • Ryu, Hokyung;Chung, Seong Jin;Lee, Jin Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.459-468
    • /
    • 2014
  • An additional relationship equation is numerically obtained to increase the accuracy of the conventional equation for obtaining the resonant frequency of a resonator. Although the conventional equation is widely used in industry because of its simplicity, it does not provide enough information on the cavity or the neck of the resonator for noise reduction in a duct. Resonator designers have difficulty implementing resonator design owing to the uncertainty in geometry presented by the well-known formula for determining the resonant frequency. To overcome this problem, this work determines an approximate equation using results of numerical calculation. To this end, shape parameters of the neck and cavity of a resonator are defined, and an equation describing the relationship between them is derived by adjusting the peak frequency in the transmission loss curve of a resonator to its resonant frequency. The application and validity of the derived equation are investigated in a numerical simulation and an acoustic experiment, respectively.

A Study on the Absorption Performance of a Perforated Panel type of Resonator (다공패널형 공명기의 흡음성능에 관한 연구)

  • Song, Hwayoung;Yang, Yoonsang;Lee, Donghoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.224-231
    • /
    • 2016
  • When aiming to reduce the low frequency noise of a subway guest room through sound absorbing treatment methods inside the wall of a tunnel the resonator is often more effective than a porous sound absorbing material. Therefore, the perforated panel type resonator embedded with a perforated panel is proposed. The perforated panel is installed in the neck, which is then extended into the resonator cavity so that it can ensure useful volume. The absorption performance of the perforated panel type of resonator is obtained by acoustic analysis and experiment. The analytical results are in good agreement with the experimental results. In the case of multiple perforated panel type resonators, as the number of perforated panels increase, the 1st resonance frequency is moved to a low frequency band and sound absorption bandwidth is extended on the whole. In order to obtain excellent absorption performance, the impedance matching between multi-panels should be considered. When the perforated panel in the resonator is combined with a porous material, the absorption performance is highly enhanced in the anti-resonance and high frequency range. In case of the resonator inserted with perforated panels of 2, the 2nd resonance frequency is shifted to a low frequency band in proportion to the distance between perforated panels.