DOI QR코드

DOI QR Code

Design of a Helmholtz Resonator for Noise Reduction in a Duct Considering Geometry Information: Additional Relationship Equation and Experiment

형상 정보를 고려한 덕트 소음 저감용 헬름홀츠 공명기 설계: 추가 관계식과 실험

  • 류호경 (아주대학교 기계공학과) ;
  • 정성진 (삼성 메디슨, 시스템개발 Lab.) ;
  • 이진우 (아주대학교 기계공학과)
  • Received : 2014.01.08
  • Accepted : 2014.02.20
  • Published : 2014.04.01

Abstract

An additional relationship equation is numerically obtained to increase the accuracy of the conventional equation for obtaining the resonant frequency of a resonator. Although the conventional equation is widely used in industry because of its simplicity, it does not provide enough information on the cavity or the neck of the resonator for noise reduction in a duct. Resonator designers have difficulty implementing resonator design owing to the uncertainty in geometry presented by the well-known formula for determining the resonant frequency. To overcome this problem, this work determines an approximate equation using results of numerical calculation. To this end, shape parameters of the neck and cavity of a resonator are defined, and an equation describing the relationship between them is derived by adjusting the peak frequency in the transmission loss curve of a resonator to its resonant frequency. The application and validity of the derived equation are investigated in a numerical simulation and an acoustic experiment, respectively.

공명기의 공명주파수를 계산할 수 있는 전통적인 공식의 정확도를 높이기 위한 추가 관계식을 수치적인 방법으로 얻는다. 그 전통적인 공식은 단순함 때문에 산업계에서 널리 사용되고 있지만, 덕트 소음 저감용 공명기의 공동과 목에 대한 정보를 충분히 제공하지 못한다. 그러므로, 산업 현장에서는 그 공식이 갖는 형상의 불확실성 때문에 실제 공명기 설계에 많은 어려움을 겪고 있다. 이 단점을 극복하기 위해서, 본 연구에서는 수치 계산 결과를 이용하여 추가 근사식을 유도하고자 한다. 이를 위해, 목과 공동의 형상 계수를 정의하고, 공명기의 투과 손실 곡선 상의 피크 주파수와 계산식의 공명 주파수가 일치해야 한다는 조건을 사용하여 형상 계수들 사이의 관계식을 유도하였다. 유도된 관계식의 유효성을 수치적인 방법과 실험적인 방법으로 검증하였다.

Keywords

References

  1. Helmholtz, H., 1954, On the Sensations of Tone, DoverPublications, New York, pp. 36-45.
  2. Ingard, U., 1953, "On the Theory and Design of Acoustic Resonator," Journal of the Acoustical Society of America, Vol. 25, No. 6, pp. 1037-1061. https://doi.org/10.1121/1.1907235
  3. Selamet, A., Kothamasu, V. and Novak, J. M., 2001, "Insertion Loss of a Helmholtz Resonator in the Intake System of Internal Combustion Engines: an Experimental and Computational Investigation," Applied Acoustics, Vol. 62, No. 4, pp. 381-409. https://doi.org/10.1016/S0003-682X(00)00042-6
  4. Chen, K. T., Chen, Y. H., Lin, K. Y. and Weng, C.C., 1998, "The Improvement on the Transmission Loss of a Duct by Adding Helmholtz Resonators," Applied Acoustics, Vol. 54, No. 1, pp. 71-82. https://doi.org/10.1016/S0003-682X(97)00036-4
  5. Yasuda, T., Wu, C., Nakagawa, N. and Nagamura, K., 2013, "Studies on an Automobile Muffler with the Acoustic Characteristic of Low-Pass Filter and Helmholtz Resonator," Applied Acoustics, Vol. 74, No. 1, pp. 49-57. https://doi.org/10.1016/j.apacoust.2012.06.007
  6. Sun, D., Qiu, L., Wang, B. and Xiao, Y., 2009, "Novel Helmholtz Resonator Used to Focus Acoustic Energy of Thermoacoustic Engine," Applied Thermal Engineering, Vol. 29, No. 5-6, pp. 945-949. https://doi.org/10.1016/j.applthermaleng.2008.05.004
  7. Selamet, A., Radavich, P. M., Dickey, N. S. and Novak, J. M., 1997, "Circular Concentric Helmholtz Resonators," Journal of the Acoustical Society of America, Vol. 101, No. 1, pp. 41-51. https://doi.org/10.1121/1.417986
  8. Oh, J. E., Han, K. H. and Hong, J. H., 1998, "Development of the Simulator for Estimating Intake Noise of Vehicle and Its Improvement (Part I) -Selection of Optimum Position of a Resonator," Trans. Korean Soc. Mech. Eng. A, Vol. 22, No. 2, pp. 391-398.
  9. Selamet, A. and Ji, J. L., 1997, "Circular Asymmetric Helmholtz Resonators," Journal of the Acoustical Society of America, Vol. 107, No. 5, pp. 2360-2369.
  10. Haa, S. T. and Y. H. Kim, 1994, "The Limitation and Applicability of Helmholtz Resonator, Regarding as Equivalent Single-Degree of Vibration System," Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 4, No. 2, pp. 209-219.
  11. Hwang, S., Hwang, S. and Jeong, W., 1998, "Advanced Design Technique of Helmholtz Resonator Adopting the Genetic Algorithm," Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 8, No. 6, pp.1113-1120.
  12. Alster, M., 1972, "Improved Calculation of Resonant Frequencies of Helmholtz Resonators," Journal of Sound and Vibration, Vol. 24, No. 1, pp. 63-85. https://doi.org/10.1016/0022-460X(72)90123-X
  13. Chanaud, R.C, 1994, "Effect of Geometry on the Resonance Frequency of Helmholtz Resonators," Journal of Sound and Vibration, Vol. 178, No. 3, pp. 337-348. https://doi.org/10.1006/jsvi.1994.1490
  14. Chanaud, R. C., 1997, "Effect of Geometry on the Resonance Frequency of Helmholtz Resonator Part2," Journal of Sound and Vibration, Vol. 204, No. 5, pp. 829-834. https://doi.org/10.1006/jsvi.1997.0969
  15. Kim, H. J., Cha, J. -P., Song, J. -K. and Ko, Y. S., 2010, "Geometric and Number Effect on Damping Capacity of Helmholtz Resonators in a Model Chamber," Journal of Sound and Vibration, Vol. 329, No. 16, pp. 3266-3279. https://doi.org/10.1016/j.jsv.2010.02.018
  16. Tang, S. K., 2005, "On Helmholtz Resonators with Tapered Necks," Journal of Sound and Vibration, Vol. 279, No. 3-5, pp. 1085-1096. https://doi.org/10.1016/j.jsv.2003.11.032
  17. Kweon, Y. H., Aoki, T., Miyazato, Y., Kim, H. D., Setoguchi, T., 2006, "Computational Study of an Incident Shock Wave into a Helmholtz Resonator," Science Direct, Vol. 35, No. 10, pp. 1252-1263.
  18. Dan, Z., Morgans, A. S., 2009, "Tuned Passive Control of Combustion Instabilities Using Multiple Helmholtz Resonators," Journal of Sound and Vibration, Vol. 320, No. 4-5, pp. 740-757.
  19. Xu, M. B., Selamet, A. and Kim, H., 2010, "Dual Helmholtz Resonator," Applied Acoustics, Vol. 71, No. 9, pp. 822-829. https://doi.org/10.1016/j.apacoust.2010.04.007
  20. Tang, S.K., Ng, C. H. and Lam, E. Y. L., 2012, "Experimental Investigation of the Sound Absorption Performance of Compartmented Helmholtz Resonators," Applied Acoustics, Vol. 73, No. 9, pp. 969-976. https://doi.org/10.1016/j.apacoust.2012.03.016
  21. Li, D., and Cheng, L., 2007, "Acoustically Coupled Model of an Enclosure and a Helmholtz Resonator Array," Journal of Sound and Vibration, Vol. 305, No. 1-2, pp. 272-288. https://doi.org/10.1016/j.jsv.2007.04.009
  22. Kim, S. R. and Kim, Y. H., 2005, "A Helmholtz Resonator Array Panel for Low Frequency Sound Absorption." Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 15, No. 8, pp. 924-930. https://doi.org/10.5050/KSNVN.2005.15.8.924
  23. Park, S. H. and Seo, S. H., 2012, "Low-frequency Noise Reduction in an Enclosure by Using a Helmholtz Resonator Array," Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 22, No. 8, pp. 756-762. https://doi.org/10.5050/KSNVE.2012.22.8.756
  24. Kinsler, L. E., Fre, A. R., Coppens, A. B., Sanders, J. V. Park, S. H. and Seo, S. H., 2000, Fundamentals of Acoustics, John Wiley and Sons, Hoboken, pp. 284-285.