• Title/Summary/Keyword: Resonator Design

Search Result 545, Processing Time 0.035 seconds

Design of a Triple-Mode Bandpass Filter Using a Closed Loop Resonator

  • Myung, Jae-Yoon;Yun, Sang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.86-90
    • /
    • 2017
  • In this study, a novel third-order bandpass filter, which is based on a rectangular closed loop resonator, is presented. By adding a series resonator to the conventional loop resonator, the resonator's even resonant mode is split into two modes, while the odd resonant mode is not affected. Therefore, by varying the values of the series resonator elements, the resonant frequencies of two even modes can be determined independent of the odd-mode resonant frequency. In the proposed triple-mode filter design, instead of using a lumped series resonator, a T-shaped transmission line is coupled to the resonator via a small gap. To verify the design method, a filter is designed at 2.4 GHz with a bandwidth of 100 MHz. The improved performances of the proposed triple-mode filter are compared with those of the conventional dual mode filter.

Design of MEMS Resonator Array for Minimization of Mode Localization Factor Subject to Random Fabrication Error (랜덤 제조 오차를 고려한 모드 편재계수를 최소화하는 반복 배열 마이크로 공진기의 최적설계)

  • Kim, Wook-Tae;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.840-845
    • /
    • 2005
  • This paper presents a robust optimal design method for a periodic structure type of MEMS resonator that is vulnerable to mode localization. The robust configuration of such a MEMS resonator to fabrication error is implemented by changing the regularity of periodic structure. For the mathematical convenience, the MEMS resonator is first modeled as a multi pendulum system. The index representing the measure of mode variation is then introduced using the perturbation method and the concept of modal assurance criterion. Finally, the optimal intentional mistuning, minimizing the expectation of the irregularity measure for each substructure, is determined for the normal distributed fabrication error and its robustness in the design of MEMS resonator to the fabrication error is demonstrated with numerical examples.

  • PDF

Design of MEMS Resonator Array for Minimization of Mode Localization Factor Subject to Random Fabrication Error (랜덤 제조 오차를 고려한 모드 편재계수를 최소화하는 반복 배열 마이크로 공진기의 최적설계)

  • Kim, Wook-Tae;Lee, Chong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.931-938
    • /
    • 2005
  • This paper presents a robust optimal design method for a periodic structure type of MEMS resonator that is vulnerable to mode localization. The robust configuration of such a MEMS resonator to fabrication error is implemented by changing the regularity of periodic structure For the mathematical convenience, the MEMS resonator is first modeled as a multi-pendulum system. The index representing the measure of mode variation is then introduced using the perturbation method and the concept of modal assurance criterion. Finally, the optimal intentional mistuning, minimizing the expectation of the irregularity measure for each substructure, is determined for the normal distributed fabrication error and its robustness in the design of MEMS resonator to the fabrication error is demonstrated with numerical examples.

Experimental Analysis on the Resonator in the Rotary Compressor (회전압축기 공명기에 관한 실험적 연구)

  • Lee, Byung-Chan;Kim, Jin-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1410-1415
    • /
    • 2000
  • This paper introduces the experimental analysis of the resonator in the rolling piston type compressor for air conditioner. The resonator located between cylinder and bearing is a major factor in the noise reduction of the rotary compressor. Several shapes for the resonator which can be built in the space limitations are derived. Then optimal resonator type for the noise reduction is determined by noise tests. 6 design parameters of the type are found and optimal level for each design factor is deduced from Taguchi method.

  • PDF

A design of Dual-mode Folded Ring Resonator (이중모드 접힌 링-공진기를 이용한 BPF 설계)

  • Kang, Seong-Jun;Hwang, Hee-Yong
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.145-151
    • /
    • 2007
  • In this paper, a BPF with a dual mode folded ring resonator is presented. The dual mode ring resonator is also exactly analyzed by using Y-parameter method, in which the difference in admittance of two lines make the ring resonator work as a dual mode resonator. The proposed BPF has an advantage of small size compared to conventional one with dual mode ring resonator.

  • PDF

Design of An Open-Ended Coaxial Cavity Resonator (한쪽 면이 열린 동축 공동 공진기의 설계에 대한 연구)

  • Lee, Yun-Min;Kim, Jin-Kook;Hur, Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.201-208
    • /
    • 2013
  • This paper is a study of an empirical design of an open-ended coaxial cavity resonator. It can be done by using the radius of the inner conductor, the inner radius and the length of the resonator. However, the basic coaxial transmission -line theory can be seen that the characteristics of the resonant frequency and the Q value are varied by the change of length, regardless of the value of radius of the inner conductor and inner radius of the resonator. We find out the impact of radius of the inner conductor, inner radius of the resonator and the length of the resonator parameter and propose the optimized empirical resonator design method by reducing the error between the theoretical value and the design value. Based on the simulation, several resonators are fabricated by the size of 14 mm for the radius of inner conductor, 2 mm, 5 mm, 10 mm respectively for the inner radius of resonator, and 8.5 mm for the length of the resonator. The resonant frequencies of the produced resonators were measured at 6.1, 5.7, 6.5 GHz respectively. According to the result of simulation and measurement, we know that we can design the relatively exact open-ended coaxial cavity resonator by applying the basic coaxial transmission-line theory directly when the length of the resonator is less than 10 mm, and adding the correction factor of 0.5 GHz to the calculated resonant frequency in case of more than 10 mm of the length of the resonator.

The Design of Piezo-driven mirror for the Path Length Control in a Ring Resonator (링 공명기의 경로치 제어를 위한 피에조 구동 거울의 설계)

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2551-2556
    • /
    • 2009
  • The principal operation of a ring laser gyroscope depends on the phase difference for the counter-propagating waves within a closed path. The reflection mirrors mounted on the resonator block form the traveling waves. Thus, the dimension accuracy of resonator block influences the traveling path of beam. In order to maintain the stable optical beam path in the ring resonator, the piezo-driven moveable mirror is adopted for the path length control under the thermal expansion or mechanical strain of resonator block. This paper presents the mathematical description of the elastic behavior of piezo-driven mirror. This description can be applied for the concept design of piezo-driven mirror.

An Experimental Study on Acoustic Absorption in a Model Chamber with a Half-Wave Resonator (반파장 공명기를 장착한 모형연소실의 흡음특성에 대한 실험적 연구)

  • Sohn, Chae-Hoon;Park, Ju-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.34-40
    • /
    • 2008
  • Acoustic design parameters of a half-wave resonator are studied experimentally for acoustic stability in a model chamber. According to the standard acoustic-test procedures, acoustic-pressure signals are measured. Quantitative acoustic properties of damping factor and sound absorption coefficient are evaluated and thereby, the acoustic-damping capacity of the resonator is examined. The diameter and the number of a half-wave resonator, its distribution, and the diameter of an enclosure are selected as the design parameters for optimal tuning of the resonator. Aroustic-damping capacity of the resonator increases with its diameter. When the open-area ratio of the resonator exceeds the optimum value, over-damping appears, leading to the decrease in the peak absorption coefficient and the broadening of absorption bandwidth. As the resonator diameter increases, optimum open-area ratio decreases.

Dynamic Models of Hemispherical Resonator Gyros and Tests of Basic Control Characteristics (반구형 공진 자이로의 동작모델과 기초 제어특성 실험)

  • Jin, Jaehyun;Choi, Hong-Taek;Yoon, Hyungjoo;Kim, Dongguk;Sarapulov, Sergii
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.947-954
    • /
    • 2013
  • This article focuses on a hemispherical resonator gyro driven by the Coriolis effect. The operational principle of resonator gyros and mathematical models are introduced. These models are useful to explain the behavior of a resonator and to design controllers. Several control tests of a resonator have been done. A resonator has been excited by electromagnets controlled by a computer. Its amplitude has been adjusted by a PI control. The transient response is matched with a simulation result based on a mathematical model. A vibrating pattern may drift due to non-uniform factors of a resonator. The drift of the vibrating pattern is controlled and aligned to a reference direction by a PI control. These results are very useful to understand the behavior of resonator gyros and to design advanced control algorithm for better performance.

A Study on the Optimum Design of Resonance Intake System For 4 Cylinder Diesel Engines (4실린더 디젤기관 공명 흡기계의 최적설계에 관한 연구)

  • 남정길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.836-843
    • /
    • 1998
  • In this paper effects of resonator within intake manifold system on volumetric efficiency were investigated n the 4-cylinder and 4 stroke Diesel Engines. The effects of resonator system were analyzed on resonant speed and on volumetric efficiency for a complicated intake system with resonator was confirmed. And the optimum design method of the resonant system which had the overall high and flat characteristic of volumetric efficiecncy was proposed.

  • PDF