• Title/Summary/Keyword: Resonant frequency(공진주파수)

Search Result 588, Processing Time 0.031 seconds

Evaluation of Unit Weight and Strength of Sand Using Electro-mechanical Impedance (전기-역학적 임피던스를 이용한 모래의 단위중량 및 강도 평가)

  • Park, Sung-Sik;Woo, Seung-Wook;Lee, Jung-Shin;Lee, Sae-Byeok;Lee, Jun Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.2
    • /
    • pp.33-42
    • /
    • 2018
  • In this study, the EMI (electro-mechanical impedance) of a small piezoelectric sensor was applied for measuring a unit weight and cementation (strength) of sand. Three different sizes of uncemented Nakdong River sand were filled loosely or densely into a compaction mold. A piezoelectric sensor with 20 mm in diameter was installed within sand for impedance measurement. A small Nakdong River sand was mixed with cement ratios of 4, 8 12, 16% and then compacted into a specimen with 50 mm in diameter and 100 mm in height. The specimen consisted of 6 layers with a sensor at the third layer. The impedance signals for 3 days and unconfined compressive strength at the 3rd day were measured. As the unit weight of uncemented sand increased, the resonant frequency increased slightly from 102 to 105 kHz but a conductance at resonant frequency decreased. For cemented sands, as the curing time and cement ratio increased, the resonant frequency increased significantly from 129 to 266 kHz but the conductance at resonant frequency decreased. The unconfined compressive strength (UCS) of cemented sands was between 289 and 1,390 kPa for different cement ratios. The relationship of UCS and resonant frequency linearly increased but one with a conductance at resonant frequency was in inverse proportion.

A Contact-less Power Supply for Photovoltaic Power Generation System (태양광 발전 시스템을 위한 무접점 전원장치)

  • Lee, Hyun-Kwan;Kong, Young-Su;Kim, Yoon-Ho;Lee, Gi-Sik;Kang, Sung-In;Chung, Bong-Geun;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.216-223
    • /
    • 2006
  • The high efficiency full-bridge LLC resonant converter using a contact-less transformer Is proposed for the photovoltaic power generation system. For the series resonance with a series capacitor, the LLC resonant converter utilizes the leakage inductance and magnetizing inductance of a contact-less transformer Unlike the conventional series resonant converter operated to the continuous resonant current at above resonance frequency, the proposed converter operates to the discontinuous resonant current at the narrow frequency control range below resonance frequency. Due to the discontinuous mode resonant current, the proposed converter can be achieved the zero voltage switching (ZVS) in the primary switches and the zero current switching (ZCS) in the secondary rectification diodes without my auxiliary circuit. In this paper, the experimental results of the proposed full-bridge LLC resonant converter using a contact-less transformer are verified on the simulation based on the theoretical analysis and the 150W experimental prototype.

A Study on Frequency Shift of Piezo Microstrip Antennas (피에조 마이크로스트립 안테나의 주파수 이동에 관한 연구)

  • Kang, Hyunil;Joung, Yeun-Ho;Hwang, Hyun Suk;Lim, Yun-Sik;Yu, Young Sik;Song, Woochang;Lee, Jongsung
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.22-25
    • /
    • 2012
  • In this paper, we proposed a method of the resonant frequency shift of a microstrip patch antenna using $LiNbO_3$, PVDF and FR-4 substrates. We designed and analyzed from these parametars optimized using Ensemble V 7.0 of the simulation tool. We observed the resonant frequency by DC appled electric field in a microstrip patch antenna. When $LiNbO_3$ substrate were applied from -300 to 300 V/mm, we obtained the resonant frequency shift of maximum 29 MHz. The microstrip patch antenna with PVDF (poly vinylidene fluoride) substrate, we obtained the resonant frequency shift of maximum 17 MHz at frequency 6 GHz. but when Epoxy FR-4 substrates used, the resonant frequency does not changed. This results showed the resonant frequency shift without physical strains in a microstrip patch antenna.

Analysis of the Spherical-Rectangular Patch Microstrip Resonator (구면사각패치 마이크로스트립 공진기 해석)

  • Yang, Doo-Young;Lee, Sang-Seol
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.11
    • /
    • pp.25-31
    • /
    • 1990
  • We analyze the spherical-rectangular patch microstrip resonator with conformal surface by the cavity model and derive the formulas to calculate resonant frequency in the consideration of effective dielectric constant in order to minimize the errors of resonant frequency due to the fringing fields. A transmission type spherical-rectangular patch microstrip resonator operating at 3GHz, for example, is designed and fabricated on Epsilam-10 substate. Measuring data of resonant frequency and return loss are 2.985 GHz and -44.4dB respectively. Those well agreed with theoretical values.

  • PDF

Series-resonant High efficiency Induction Heating System following Resonant Frequency (공진주파수 추종 직렬공진형 고효율 유도.가열장치에 관한 연구)

  • 성병기;박성준;김광태;김철우
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.3
    • /
    • pp.124-128
    • /
    • 1999
  • The object of the present study is to obtain a 20[kHz], 10[kW] rating, high efficiency induction heating system by high frequency serises-resonant inverter. Proposed is a topology that minimize a reactive power, by which direct iOIrt voltage is variable corresponding to the variation of the load, heated-object, and by which the switching of inverter is forced to follow a resonant frequency. And assured that the power foctor of the inverter in a induction heating system is proper about O.96 through the simulation and results.esults.

  • PDF

Design of Microstrip Antenna to Tune Resonant Frequency with Voltage Control (공진 주파수 전압 제어 마이크로스트립 안테나 설계)

  • Kim, Young-Ro;Woo, Jong-Myung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.688-693
    • /
    • 2009
  • In this paper, a half wave-length microstrip antenna was proposed to be able to continuously tune the resonant frequency in the stated area of UHF ISM band. By loading varactor diodes at both edges of the half wavelength antenna, where the electric field is the strongest, and varying the voltage in order to tune the electrical resonance length continuously, it is possible to automatically recover the resonant frequency and input impedance shifted by surrounding environment. When the microstrip antenna(center resonant frequency: 425 MHB) was tested, by adjusting the each voltages of varactor diodes from DC 0.6 to BC 3.0 volts, the resonant frequency under 20 dB return loss was varied 385 to 465 MHz. The peak gain was -0.2 dBd and return loss -10 dB bandwidth was 3.3 MHz(0.8 %).

A Study on the Embedded Capacitor for High Frequency Decoupling (고주파용 디커플링 임베디드 캐패시터에 관한 연구)

  • Hong, Keun-Kee;Hong, Soon-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.918-923
    • /
    • 2008
  • We proposed an embedded capacitor with the unique electrode structure, which electrodes are located on the same plane and dielectric gap was formed by electrodes. We named it 'Gap type EC', and it was analyzed by the FEM(Finite element Method) program tool. The resonant frequency of Cap type EC was obtained at more higher frequency region. Also, resonant frequency was changed with the magnitude and thickness of electrodes. The Gap type EC with the dielectric gap of $50{\mu}m$ showed capacitance density of $55pF/cm^2$. This value is the higher than that of conventional EC. So, we concluded that the Gap type EC can be a good candidate for high frequency decoupling.

Frequency Tunable and Miniaturized Zeroth-Order Resonant(ZOR) Antenna Design by Metamaterial (메타 물질을 이용하여 소형화와 주파수 가변이 가능한 영차 공진 안테나)

  • Jang, Young-Soo;Choi, Jae-Hyurk;Lim, Sung-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.8
    • /
    • pp.900-904
    • /
    • 2010
  • In this paper, a frequency tunable zeroth-order resonant(ZOR) antenna has been implemented. The ZOR characteristics of the proposed antenna is realized by using a composite right-and left-handed(CRLH) transmission line which consists of a rectangular slot on the ground plane of a mushroom structured antenna in order to minimize the antenna size. In addition, the tunable devices are introduced on the slotted ground plane for frequency tuning capability. Depending on the on and off states of the tunable device on the slotted ground plane, a shunt inductance value of the CRLH transmission line is changed and its resonant frequency becomes tunable. From the experimental results, the resonant frequency of the proposed antenna is changed from 4.92 GHz to 2.96 GHz. Additionally, the proposed antenna's size is reduced by 94.24 % compared with the half-wavelength patch antenna.

Zeroth-Order Resonant Antenna with Frequency Reconfigurable Radiating Structures (주파수 재구성 가능한 방사 구조를 갖는 영차 공진 안테나)

  • Lee, Hongmin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.12-20
    • /
    • 2013
  • In this paper, a co-planar waveguide(CPW) fed zeroth-order resonant(ZOR) antenna with frequency reconfigurable radiating structures is fabricated and measured. The unit cell of proposed antenna consists of a series metal-insulator-metal(MIM) capacitor and two shunt line inductors which are shorted through the via. The proposed antenna is designed based on a composite right/left-handed(CRLH) transmission line with two unit cells and it has open ended structure in order to radiate electromagnetic energy mainly on the shunt arm. In order to reduce the antenna size and to exhibit a frequency reconfigurable ability using diode switches four straight strips bent by 90 degrees are used as shunt inductors. The total size of fabricated antenna is $0.22{\lambda}_0{\times}0.16{\lambda}_0$ at zeroth-order resonant(ZOR) frequency. The measured maximum gain and bandwidth (VSWR ${\leq}2$) are 3.1 dBi and 56MHz at ZOR frequency of 2.97 GHz, respectively. This type of antenna can be applied to a frequency reconfigurable antenna system with triple bands.

Permittivity Characteristic Analysis of Planar Substrates Using H-shaped Resonant Aperture (H-모양 공진 개구를 이용한 평면 기판의 유전율 특성 분석)

  • Yeo, Junho;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.55-56
    • /
    • 2018
  • In this paper, a method for analyzing the dielectric constant of a planar substrate is proposed. To this end, a band-stop filter was created by adding a H-shaped resonant aperture to the ground plane of a microstrip transmission line. A planar substrate of 2 mm thickness was placed behind the ground plane of the microstrip transmission line and the change of the resonant frequency with the change of the dielectric constant of the substrate was investigated. It can be seen that the change ratio of the frequency to the reference resonant frequency is larger than that of the conventional complementary split ring resonator structure.

  • PDF