• 제목/요약/키워드: Resonant circuit

검색결과 939건 처리시간 0.032초

Multiple Buck-Chopper using Partial Resonant Switching

  • Mun Sang-Pil;Suh Ki-Young;Lee Hyun-Woo;Chun Jung-Ham
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.189-192
    • /
    • 2001
  • This paper proposed that an AC-DC converter system using multiple buck-chopper operates with four choppers connecting to a number of parallel circuits. To improve these, a large number of soft switching topologies included a resonant circuit have been proposed. And, some simulative results on computer are included to confirm the validity of the analytical results. The partial resonant circuit makes use of an inductor using step-down and a condenser of loss-less snubber. The result is that the switching loss is very low and the efficiency of system is high. And the snubber condenser used in a partial resonant circuit makes charging energy regenerated at input power source for resonant operation. The proposed conversion system is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF

Analysis of an Interleaved Resonant Converter for High Voltage and High Current Applications

  • Lin, Bor-Ren;Chen, Chih-Chieh
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1632-1642
    • /
    • 2014
  • This paper presents an interleaved resonant converter to reduce the voltage stress of power MOSFETs and achieve high circuit efficiency. Two half-bridge converters are connected in series at high voltage side to limit MOSFETs at $V_{in}/2$ voltage stress. Flying capacitor is used between two series half-bridge converters to balance two input capacitor voltages in each switching cycle. Variable switching frequency scheme is used to control the output voltage. The resonant circuit is operated at the inductive load. Thus, the input current of the resonant circuit is lagging to the fundamental input voltage. Power MOSFETs can be turn on under zero voltage switching. Two resonant circuits are connected in parallel to reduce the current stress of transformer windings and rectifier diodes at low voltage side. Interleaved pulse-width modulation is adopted to decrease the output ripple current. Finally, experiments are presented to demonstrate the performance of the proposed converter.

NOISE CHARACTERISTICS OF SIMPLIFIED FORWARD-TYPE RESONANT CONVERTER

  • Higashi, Toru
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.559-562
    • /
    • 2000
  • The problem of noise generation due to PWM switched-mode power converter has been widely noticed from the viewpoint of Electromagnetic Interference(EMI). Many kings of topologies for resonant converters have been developed both to overcome this noise problem and to attain high power efficiency. It is reported in references that resonant converters which are derived from PWM converter using resonant switch show much lower noise characteristics than PWM converter, and that current-mode resonant converter is more sensitive to stored charge in rectifying diode than voltage-mode counterpart concerning surge generation at diode’s turn-off. On the other hand, above mentioned resonant converters have defect of high-voltage stress on semiconductor switch and complicated circuit configuration. Hence, the simplified Forward-type resonant converter has been proposed and investigated due to its prominent features of simplicity of circuit configuration, low voltage stress and high stability. However, its noise characteristics still remain unknown. The purpose of this paper is to study quantitatively the noise characteristics of this simplified Forward-type resonant converter by experiment and analysis. The influence of parasitic elements and stored charge in rectifying diode on noise generation has been clarified.

  • PDF

고역율 AC/AC 전류형 고주파 공진 인버터의 특성해석에 관한 연구 (A Study on Characteristic Analysis of AC to AC Current-Fed Type High Frequency Resonant Inverter with High Power Factor)

  • 김종해;원재선
    • 조명전기설비학회논문지
    • /
    • 제28권1호
    • /
    • pp.16-28
    • /
    • 2014
  • This paper presents a novel high-power-factor circuit topology of AC to AC current-fed type high frequency resonant inverter which includes the function of power factor correction(PFC) in the proposed inverter to operate the AC input block with high power factor. The proposed circuit topology of AC to AC current fed type high resonant inverter removes DC link electrolytic capacitor and has also the one of power factor correction(PFC) in the inverter circuit without an additional PFC circuit since the input current by constituting it in parallel as an unit inverter, which assumes the class-E high frequency resonant inverter of conventional current-fed type, flows in the form of the resultant current flowing through each constant current reactor($L_{d1}$, $L_{d2}$). The circuit analysis of proposed inverter is generally described by adopting the normalized parameters and the evaluation of its operating characteristics are conducted by using the parameters such as the ratio of switching and resonant frequency(${\mu}$), coupling coefficient(k) and so on. An example of procedure for circuit design based on the characteristic values obtained from the theoretical analysis is presented. To confirm the validity of the theoretical analysis, the experimental results are also presented. In the future, the proposed inverter shows it can be practically used as power supply system for induction heating application, DC-DC converter etc.

공진 DC 링크 스너버를 이용한 3상 전류형 PWM 컨버터 (Three-phase current type PWM converter using resonant DC Link snubber)

  • 서기영;이현우;이수흠;문상필;김영문
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.1015-1019
    • /
    • 2001
  • This paper presents a novel three-phase current-fed Pulse Width Modulation converter with switched capacitor type resonant DC link commutation circuit operating PWM pattern strategy under a design consideration of low-pass filter, which can operate on the basis of the principle of zero current soft switching commutation. In the first place, the steady state operating principle of this converter with a new resonant DC link snubber circuit is described in connection with the equivalent operation circuit, together with the practical design procedure of the switched-capacitor type resonant DC link circuit is discussed from a theoretical viewpoint on the basis of a design example for high-power applications. The actively delayed time correction method to compensate distorted currents due to a relatively long resonant commutation time is newly implemented in the open loop control scheme so as to acquire the new optimum PWM pattern. Finally, the experiment of set-up in laboratory system of this converter is concretely demonstrated herein to confirm a zero current soft-switching commutation of this converter. The comparative evaluations between current-fed hard switching PWM and soft-switching PWM converters are carried out from a viewpoint of their PWM converter characteristics.

  • PDF

공진 DC 링크 스너버를 이용한 3상 전류형 PWM 컨버터의 해석 (analysis of three-phase current type PWM converter using resonant DC Link snubber)

  • 이상현;문상필;서기영;김영문;강욱중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.55-59
    • /
    • 2002
  • This paper presents a novel three-phase current-fed Pulse Width Modulation converter with switched capacitor type resonant DC link commutation circuit operating PWM pattern strategy under a design consideration of low-pass filter, which can operate on the basis of the principle of zero current soft switching commutation. In the first place, the steady state operating principle of this converter with a new resonant DC link snubber circuit is described in connection with the equivalent operation circuit, together with the practical design procedure of the switched-capacitor type resonant DC link circuit is discussed from a theoretical viewpoint on the basis of a design example for high-power applications. The actively delayed time correction method to compensate distorted currents due to a relatively long resonant commutation time is newly implemented in the open loop control scheme so as to acquire the new optimum PWM pattern. Finally, the experiment of set-up in laboratory system of this converter is concretely demonstrated herein to confirm a zero current soft-switching commutation of this converter. The comparative evaluations between current -fed hard switching PWM and soft-switching PWM converters are carried out from a viewpoint of their PWM converter characteristics.

  • PDF

단일 펄스 소프트 스위칭을 이용한 고역률 고효율 DC-DC 컨버터 (High Power Factor and High Efficiency DC-DC Converter using Single-Pulse Soft-Switching)

  • 정상화;권순걸;서기영;이현우;곽동걸;김영철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1148-1150
    • /
    • 2003
  • Power conversion system must be increased switching frequency in order to achieve a small size, a light weight and a low noise. However, the switches of converter are subjected to high switching power losses and switching stresses. As a result of those, the power system brings on a low efficiency. To improved these, a large number of soft switching topologies included a resonant circuit has been prosed. But these circuits increase number of switch in circuit and complicate sequence of switching operation. In this paper, the authors propose a high power factor and high efficiency DC-DC converter using single-pulse soft switching by partial resonant switching node. The switching devices in a prosed circuit are operated with soft switching by the partial resonant method, that is, Partial Resonant Switch Mode Power Converter. The partial resonant circuit makes use of a inductor using step up and a condenser of loss-less snubber. The result is that the switching loss is very low and the efficiency of system is high. Also the proposed converter is deemed the most suitable for high power applications where the power switching devices are used. Some simulative results on computer results are included to confirm the validity of the analytical results.

  • PDF

푸시-풀형 고주파 공진 인버터에 관한 연구 (A study on the Push-Pull type high frequency resonant inverter)

  • 서철식
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.364-367
    • /
    • 2000
  • This paper describes a Push-Pull type high fre-quency resonant inverter conposed of consolidation of boost converter circuit and resonant circuit. By using a boost converter circuit the proposed inverter can obtain a twice input voltage of reson ant circuit and reduce a secondary turn ratios. By using both boost-converter and switching device can be reduce by half. Also the ana-lysis of the proposed circuit was described by using normalized parameter and operating characteristics have been evaluated as to switching frequency and parameters. In the future this pro-posed inverter shows that it can be practically used as a power source system for the lighting equipment of discharge lamp induction heating applications.

  • PDF

공진 전압 합성형 DC/DC 컨버터의 특성해석 (A Characteristic Analysis of Resonant Voltage Resultant Type DC/DC Converter)

  • 황계호;김종해;남승식;김동희;정도영;오승훈
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권1호
    • /
    • pp.40-47
    • /
    • 2000
  • This paper presents a circuit of resonant voltage resultant type DC/DC converter consists of two unit half-bridge high frequency resonant inverters, and describes operating modes, principle and analysis of the proposed circuit. Also, the analysis of the proposed circuit has generally described by using normalized parameters. Based on the characteristic values, a method of the circuit design is proposed. According to phase shift, the output voltage of the proposed circuit can be controlled. In addition, the justification of theoretical analysis was certified by comparing to the experimental waveforms. In the future, this proposed converter show that it can be practically used as the system of fixed DC voltage source etc.

  • PDF

새로운 AC PDP용 멀티레벨 에너지 회수회로 (A Novel Multi-Level Type Energy Recovery Sustaining Driver for AC Plasma Display Panel)

  • 홍순찬;정우창;강경우;유종걸
    • 조명전기설비학회논문지
    • /
    • 제19권4호
    • /
    • pp.71-78
    • /
    • 2005
  • 본 연구는 AC PDP(Plasma Display Panel)용 멀티레벨 에너지 회수회로에 관한 연구로서, 기존 멀티레벨 구동회로의 문제점을 해결한 새로운 멀티레벨 구동회로를 제안한다. 기존 멀티레벨 구동회로는 Weber회로에서 나타나는 스위칭 소자의 전압 및 전류 스트레스를 개선하였지만 공진 인덕터와 기생 커패시턴스에 의한 기생공진전류가 존재하고 하드스위칭이 발생하며 또한 천이구간이 다소 긴 문제점이 있다. 제안 회로는 사용소자의 수를 줄여 회로를 간단히 하였으며, 기생공진전류를 제거하여 회로 동작의 안정성을 높였다. 또한 CIM(Current Injection Method) 을 사용하여 하드스위칭 문제를 해결하였으며 Vs/2 유지구간을 제거하여 동작주파수를 증가시킬 수 있도록 하였다. 제안 회로의 유용성을 입증하기 위해 모드별로 동작을 해석하였으며, PSpice프로그램을 이용하여 시뮬레이션하고 그 결과를 확인하였다.