• Title/Summary/Keyword: Resonant cavity

Search Result 171, Processing Time 0.024 seconds

A Comparative Study for the Microwave Surface Resistances of $YBa_2$$Cu_3$$O-{7-$\delta$}$ Films Measured with a Microstrip Resonator and a Inutile-loaded Cavity Resonator (마이크로스트립 공진기와 Rutile-loaded Cavity 공진기로 측정한 $YBa_2$$Cu_3$$O-{7-$\delta$}$박막의 마이크로파 표면저항 비교 연구)

  • O. K. Kwon;H. J. Kwon;Lee, J. H.;Jung Hur;Lee, Sang-Young
    • Progress in Superconductivity
    • /
    • v.2 no.2
    • /
    • pp.86-91
    • /
    • 2001
  • Temperature dependences of the unloaded Q(Q$_{0}$) and the resonant frequency ( $f_{0}$) of YB $a_2$C $u_3$ $O_{7-{\delta}}$ (YBCO) microstrip ring resonators and rutile-loaded cylindrical cavity resonators were measured at low temperatures. Dc magnetron-sputtered YBCO films grown on Ce $O_2$-buffered r-cut sapphire (CbS) substrates were used fur this purpose. The surface resistances ( $R_{s}$) of YBCO films measured by both a microstrip ring resonator and a TE $01\delta$/ mode rutile-loaded cylindrical cavity resonator are compared with each other. It turned out that the values of $R_{s}$ measured by the microstrip resonator technique are comparable to those by the rutile-loaded resonator technique at temperatures lower than ~50 K. However, above 50 K, the $R_{s}$ measured by the microstrip resonator technique appeared higher according to the temperature. Our results show that the current crowding effects near the edge of a microstrip resonator become more significant at temperatures near the critical temperature.emperature.e.e.e.e.e.e.

  • PDF

Antenna sensor skin for fatigue crack detection and monitoring

  • Deshmukh, Srikar;Xu, Xiang;Mohammad, Irshad;Huang, Haiying
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.93-105
    • /
    • 2011
  • This paper presents a flexible low-profile antenna sensor for fatigue crack detection and monitoring. The sensor was inspired by the sense of pain in bio-systems as a protection mechanism. Because the antenna sensor does not need wiring for power supply or data transmission, it is an ideal candidate as sensing elements for the implementation of engineering sensor skins with a dense sensor distribution. Based on the principle of microstrip patch antenna, the antenna sensor is essentially an electromagnetic cavity that radiates at certain resonant frequencies. By implementing a metallic structure as the ground plane of the antenna sensor, crack development in the metallic structure due to fatigue loading can be detected from the resonant frequency shift of the antenna sensor. A monostatic microwave radar system was developed to interrogate the antenna sensor remotely. Fabrication and characterization of the antenna sensor for crack monitoring as well as the implementation of the remote interrogation system are presented.

Analysis of Modulus and Phase of Resonance Scattered Elastic Waves from Cylindrical Fluid Scatterers (원통형 유체 산란체에 의한 공명 산란 탄성파의 진폭 및 위상 해석)

  • 임현준;홍기석;김정태
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.62-70
    • /
    • 2001
  • Based on the recently developed resonance scattering theory for elastic waves, a relationship between the stress components, which may be measured using ultrasonic transducers, of partial waves scattered from cylindrical fluid scatterer, cavity, and resonance scatterer has been derived. The computed resonance scattered stresses exhibit frequency behaviors similar to the corresponding scattering coefficients: particularly, abrupt changes in phase by 180°near the resonant frequencies. By studying the behavior of pressure in the fluid scatterer, the physics of the theory has been further understood. Using the method studied and developed in this paper, nondestructive characterization of fluid inclusions in elastic media is expected to become more reliable.

  • PDF

Analysis and Design of a Wave Energy Conversion Buoy

  • Oh, Jin-Seok;Bae, Soo-Young;Jung, Sung-Young
    • Journal of Navigation and Port Research
    • /
    • v.32 no.9
    • /
    • pp.705-709
    • /
    • 2008
  • In the sea various methods have been conducted to capture wave energy which include the use of pendulums, pneumatic devices, etc. Floating devices, such as a cavity resonance device take advantages of both the water motion and the wave induced motions of the floating body itself. The wave energy converter is known commercially as the WAGB(Wave Activated Generator Buoy) and is used in some commercially available buoys to power navigation aids such as lights and horns. This wave energy converter consists of a circular flotation body which contains a vertical water column that has free communication with the sea. A theoretical analysis of this power generated by a pneumatic type wave energy converter is performed and the results obtained from the analysis are used for a real wave energy converter buoy. This paper is shown to have an optimum value for which maximum power is obtained at a given resonant wave period Also, the length of the internal water column corresponds to that of the water mass in the water column. If designed properly, wave energy converter can take advantage not only of the cavity resonance, but also qf the heaving motion of the buoy. Finally, simulation is performed with a LabVIEW program and the simulation results are applied to a wave energy simulator for modifying design data for a wave energy converter.

Nano-porous Silicon Microcavity Sensors for Determination of Organic Fuel Mixtures

  • Pham, Van Hoi;Bui, Huy;Hoang, Le Ha;Nguyen, Thuy Van;Nguyen, The Anh;Pham, Thanh Son;Ngo, Quang Minh
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.423-427
    • /
    • 2013
  • We present the preparation and characteristics of liquid-phase sensors based on nano-porous silicon multilayer structures for determination of organic content in gasoline. The principle of the sensor is a determination of the cavity-resonant wavelength shift caused by refractive index change of the nano-porous silicon multilayer cavity due to the interaction with liquids. We use the transfer matrix method (TMM) for the design and prediction of characteristics of microcavity sensors based on nano-porous silicon multilayer structures. The preparation process of the nano-porous silicon microcavity is based on electrochemical etching of single-crystal silicon substrates, which can exactly control the porosity and thickness of the porous silicon layers. The basic characteristics of sensors obtained by experimental measurements of the different liquids with known refractive indices are in good agreement with simulation calculations. The reversibility of liquid-phase sensors is confirmed by fast complete evaporation of organic solvents using a low vacuum pump. The nano-porous silicon microcavity sensors can be used to determine different kinds of organic fuel mixtures such as bio-fuel (E5), A92 added ethanol and methanol of different concentrations up to 15%.

A Compact Tunable VCSEL and a Built-in Wavelength Meter for a Portable Optical Resonant Reflection Biosensor Reader

  • Ko, Hyun-Sung;Kim, Bong-Kyu;Kim, Kyung-Hyun;Huh, Chul;Kim, Wan-Joong;Hong, Jong-Cheol;Park, Seon-Hee;Yang, Seong-Seok;Jang, Ho-Jin;Sung, Gun-Yong
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.395-402
    • /
    • 2010
  • This study reports a portable and precision photonic biosensor reader that can measure the concentration of a particular antigen using an optical resonant reflection biosensor (ORRB). To create a compact biosensor reader, a compact tunable vertical-cavity surface-emitting laser (VCSEL) and a compact built-in wavelength meter were manufactured. The wavelength stability and accuracy of the compact built-in wavelength meter were measured to be less than 0.02 nm and 0.06 nm, respectively. The tunable VCSEL emission wavelength was measured with the compact built-in wavelength meter, it has a fast sweep time (~ 10 seconds) and a wide tuning range (> 4 nm) that are sufficient for biosensor applications based on ORRB. The reflection spectrum of a plastic based ORRB chip was measured by the fabricated portable photonic biosensor reader using the VCSEL and wavelength meter. Although the reader is the size of a palmtop device, it could make a precise measurement of the peak wavelength on equal terms with a conventional bulky optical spectrometer.

Fabrication and Performance of Electron Cyclotron Resonance Ion Milling System for Etching of Magnetic Film Device (자성박막 소자 에칭용 전자 사이클로트론 공명 이온밀링 시스템 제작과 특성연구)

  • Lee, Won-Hyung;Hwang, Do-Guwn;Lee, Sang-Suk;Rhee, Jang-Roh
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.5
    • /
    • pp.149-155
    • /
    • 2015
  • The ECR (Electron Cyclotron Resonance) Ar ion milling was manufactured to fabricate the device of thin film. The ECR ion milling system applied to the device etching operated by a power of 600W, a frequency of 2.45 GHz, and a wavelength of 12.24 cm and transferred by a designed waveguide. In order to match one resonant frequency, a magnetic field of 908 G was applied to a cavity inside of ECR. The Ar gas intruded into a cavity and created the discharged ion beam. The surface of target material was etched by the ion beam having an acceleration voltage of 1000 V. The formed devices with a width of $1{\mu}m{\sim}9{\mu}m$ on the GMR-SV (Giant magnetoresistance-spin valve) multilayer after three major processes such as photo lithography, ion milling, and electrode fabrication were observed by the optical microscope.

Frequency modulation spectroscopy of a super-cavity using a single mode He-Ne laser (단일모드 헬륨네온레이저를 사용한 초공진기의 주파수 변조 분광연구)

  • 서호성;윤태현;조재흥;정명세;류갑열;김영덕;최옥식
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.27-36
    • /
    • 1992
  • Frequency modulation spectroscopy of the super-cavity, of which finesse is app. 40,000 has been demonstrated by using a sigle mode He-Ne laser. In-phase and quardrature components of frequency modulation signals (FM signal) were obtained by using the 1.5 MHz-driven-electrooptic phase modulator. The vector locus of the FM signa in the phase space, which is consisted of in-phase and quardrature components of the FM signal, was observed and analyzed for the dependence of FM signal upon the phase of the reference signal of a phase-sensitive-detector. According to rotating the phase of the reference signal, the vector locus was observed to rotate with the same phase angle as the reference signal. The in-phase component of the FM signals will be used to stabilize the frequency of the He-Ne laser to the resonant frequency of the super-cavity.

  • PDF

A four-port stripline circulator using a single ferrite disk (단일 페라이트 공진기를 이용한 4단자 스트립라인 서큘레이터)

  • Kim, Hye-Jin;Nam, Min-Hee;Lee, Jae-Hyun
    • Journal of Satellite, Information and Communications
    • /
    • v.4 no.2
    • /
    • pp.52-56
    • /
    • 2009
  • The design method of a four-port stripline circulator with a single ferrite disk is proposed using Green's function method. The four-port circulator gives the flexibility of the design of the communication system. Two cascaded three-port circulators has been used as a four-port circulator. However, if a four-port circulator with a single ferrite disk replace the present four-port circulator, then it will give less weight and volume and so has the advantage in satellite application.

  • PDF

Optimization of the InGaN/GaN quantum well structure for 470 mm RC-LED with variation of quantum well thickness and Indium composition (양자우물 두께와 인듐조성 변화에 의한 470 mm RC-LED InGaN/GaN 양자우물 구조의 최적화)

  • Im, Jae-Mun;Park, Chang-Yeong;Park, Gwang-Uk;Lee, Yong-Tak
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.509-510
    • /
    • 2009
  • The optical gain of InGaN/GaN multi quantum well (MQW) resonant-cavity light-emitting diode (RC-LED) with different Indium composition and well width in the multi-quantum well was investigated. The optimized optical gain was obtained by simulating active region InGaN/GaN with some test values of well width and Indium composition. By simulation tool, we could simulate on several cases, and then we got exact well width and Indium composition that makes optical gain maximum due to the short wavelength of 470 nm for blue light emission.

  • PDF