• Title/Summary/Keyword: Resonant Tank

Search Result 83, Processing Time 0.021 seconds

Comparative Study on the Motion Responses for a 40ft Class Cruise Leisure Boat (40ft 급 크루즈 레저보트의 운동성능 해석 및 모형시험 비교 연구)

  • Kim, Dong-Jin;Rhee, Key-Pyo;Yum, Deuk-Joon;Zhang, Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.240-247
    • /
    • 2013
  • Hydrodynamic characteristics of a planing craft are very sensitive to the hull form variations, especially when the craft navigates with high-speed. Therefore, we need to verify hydrodynamic performances of the craft during the process of hull form design. In this paper, motion performances of a 40ft class cruise leisure boat are evaluated by both model tests and theoretical analyses using two different methods. Model tests are carried out at calm sea and regular wave conditions using high speed towing carriage installed in SNU towing tank. Theoretical methods used are a empirical method proposed by Martin (1976) and a potential method based on Rankine panel (DNV, 2010). The results from the theoretical methods are compared with and verified by those of model tests. Results of empirical formula showed somewhat larger motion RAOs and resonant frequencies than those of model tests. Potential based method showed even larger discrepancies with the model test results. From the analyses of comparison results, we could confirm the limitation of each theoretical method and suggest the way of improvement for the better prediction of motion performances.

Development of a split beam transducer for measuring fish size distribution (어체 크기의 자동 식별을 위한 split beam 음향 변환기의 재발)

  • 이대재;신형일
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.3
    • /
    • pp.196-213
    • /
    • 2001
  • A split beam ultrasonic transducer operating at a frequency of 70 kHz to use in the fish sizing echo sounder was developed and the acoustic radiation characteristics were experimentally analyzed. The amplitude shading method utilizing the properties of the Chebyshev polynomials was used to obtain side lobe levels below -20 dB and to optimize the relationship between main beam width and side lobe level of the transducer, and the amplitude shading coefficient to each of the elements was achieved by changing the amplitude contribution of elements with 4 weighting transformers embodied in the planar array transducer assembly. The planar array split beam transducer assembly was composed of 36 piezoelectric ceramics (NEPEC N-21, Tokin) of rod type of 10 mm in diameter and 18.7 mm in length of 70 kHz arranged in the rectangular configuration, and the 4 electrical inputs were supplied to the beamformer. A series of impedance measurements were conducted to check the uniformity of the individual quadrants, and also in the configurations of reception and transmission, resonant frequency, and the transmitting and receiving characteristics were measured in the water tank and analyzed, respectively. The results obtained are summarized as follows : 1. Average resonant and antiresonant frequencies of electrical impedance for four quadrants of the split beam transducer in water were 69.8 kHz and 83.0 kHz, respectively. Average electrical impedance for each individual transducer quadrant was 49.2$\Omega$ at resonant frequency and 704.7$\Omega$ at antiresonant frequency. 2. The resonance peak in the transmitting voltage response (TVR) for four quadrants of the split beam transducer was observed all at 70.0 kHz and the value of TVR was all about 165.5 dB re 1 $\mu$Pa/V at 1 m at 70.0 kHz with bandwidth of 10.0 kHz between -3 dB down points. The resonance peak in the receiving sensitivity (SRT) for four combined quadrants (quad LU+LL, quad RU+RL, quad LU+RU, quad LL+RL) of the split beam transducer was observed all at 75.0 kHz and the value of SRT was all about -177.7 dB re 1 V/$\mu$Pa at 75.0 kHz with bandwidth of 10.0 kHz between -3 dB down points. The sum beam transmitting voltage response and receiving senstivity was 175.0 dB re 1$\mu$Pa/V at 1 m at 75.0 kHz with bandwidth of 10.0 kHz, respectively. 3. The sum beam of split beam transducer was approximately circular with a half beam angle of $9.0^\circ$ at -3 dB points all in both axis of the horizontal plane and the vertical plane. The first measured side lobe levels for the sum beam of split beam transducer were -19.7 dB at $22^\circ$ and -19.4 dB at $-26^\circ$ in the horizontal plane, respectively and -20.1 dB at $22^\circ$ and -22.0 dB at $-26^\circ$ in the vertical plane, respectively. 4. The developed split beam transducer was tested to estimate the angular position of the target in the beam through split beam phase measurements, and the beam pattern loss for target strength corrections was measured and analyzed.

  • PDF

The Design of Broadband Ultrasonic Transducers for Fish Species Identification - Dual Resonance Design of a Ultrasonic Transducer Using a Single Acoustic Matching Layer - (어종식별을 위한 광대역 초음파 변환기의 설계 II - 단일음향정합층을 이용한 이중공진형 변환기의 설계 -)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.1
    • /
    • pp.74-84
    • /
    • 1998
  • A doubly resonant ultrasonic transducer has been designed as an attempt to increase the bandwidth of underwater transducers. The dual resonance conditions were accomplished by attaching a single acoustic matching layer on the front face of a Tonpilz transducer consisted of an aluminum head, a piezoelectric ring, a brass tail and a prestress bolt. A modified Mason's model was used for the performance analysis and the design of transducers, and the constructed transducers were tested experimentally and numerically by changing the impedances and thicknesses of the head, tail and matching layers in the water tank. Two distinct resonance peaks in the transmitting voltage response(TVR) of a developed transducer were observed at 34.3 and 40.4 kHz, respectively, with the difference frequency of 6.1kHz and the center frequency of 37.2kHz. The values of TVR at these frequencies were 136.5 dB re $1\;\muPa/V$ at 34.3 kHz and 136.8 dB re $1\;\muPa/V$ at 40.4 kHz, respectively. Reasonable agreement between the experimental results and the numerical results was achieved. From this result, it is expected that the generation of the distinct resonances at any two desired frequencies can be achieved through the proper choice of the matching layer to provide the impedance transformation between the transducer and the medium.

  • PDF