• Title/Summary/Keyword: Resonant Response

Search Result 290, Processing Time 0.026 seconds

Quantitative Label-free Biodetection of Acute Disease Related Proteins Based on Nanomechanical Dynamic Microcantilevers

  • Hwang, Kyo-Seon;Cha, Byung-Hak;Kim, Sang-Kyung;Park, Jung-Ho;Kim, Tae-Song
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.151-160
    • /
    • 2007
  • We report the label-free biomolecules detection based on nanomechanical micro cantilevers operated in dynamic mode for detection of two marker proteins (myoglobin and creatin kinase-MB (CK-MB)) of acute myocardical infarctions. When the specific binding between the antigen and its antibody occurred on the fuctionalized microcantilever surface, mechanical response (i.e. resonant frequency) of microcantilevers was changed in lower frequency range. We performed the label-free biomolecules detection of myoglobin and CK-MB antigen in the low concentration (clinical threshold concentration range) as much as 1 ng/ml from measuring the dynamic response change of micro cantilevers caused by the intermolecular force. Moreover, we estimate the surface stress on the dynamic microcantilevers generated by specific antibody-antigen binding. It is suggested that our dynamic microcantilevers may enable one to use the sensitive label-free biomolecules detection for application to the disease diagnosis system based on mechanical immuno-sensor.

Gas Response and Electrical Properties of Organic Ultra-thin Films (유기 박막의 전기적 특성 및 가스 반응 특성)

  • 박재철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.820-825
    • /
    • 1998
  • We deposited stearic acid LB films by using Langmuir-Blodgett (LB)method and investigated anisotropy electrical conduction characteristics by I-V measurement for horizontal direction and vertical direction. Also, we measured gad response between deposited LB films and organic gas for various temperature(0~8$0^{\circ}C$) by 9MHz At-cut quartz crystal microbalance. The LB films have electrical conduction characteristics such as semiconducting and insulating properties. The is, the conductivity of LB films for the horizontal and vertical direction is about 10\ulcornerS/cm and 10\ulcorners/cm, respectively. the frequency shift of stearic acid LB films for the organic gases depended on the mass change by the surface adsorption and the inner penetration to the sensing films. The resonant frequency shift of the quartz crystal microbalance for temperature properties of LB films is thought to the effect of the rearrangement or the damage pf LB films above the melting point and the mobility increasement of the organic gas by the temperature rising.

  • PDF

A Study on the Optimal Drive Signal Tuning of Vibratory Gyroscope (진동형 각속도계의 최적 구동신호 튜닝에 대한 연구)

  • Lee, June-Young;Jeon, Seung-Hoon;Jung, Hyoung-Kyoon;Chang, Hyun-Kee;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.40-42
    • /
    • 2004
  • This paper describes a method to find an optimal driving condition of vibratory gyroscope. Mechanical coupling between driving and sensing mode degrades the performance of vibratory gyroscope. When the resonant frequencies of driving and sensing parts are fixed, frequency and amplitude of driving source affect mechanical coupling. Thus, they should be optimally tuned. To investigate the influence of driving source on mechanical coupling, we measured frequency response and displacement of driving and sensing mode using laser vibromenter. The measured frequency response and displacement show that the gyroscope has minimum mechanical coupling when the frequency of driving source is set to the intermediate value of driving and sensing part resonant frequency. Measurement also shows that the mechanical coupling increases abruptly at a certain driving voltage as the voltage increases.

  • PDF

Active Vibration Control Experiment on Cylindrical Shell equipped with MFC Actuators (MFC 작동기를 이용한 실린더 쉘의 능동진동제어 실험)

  • Bae, Byung-Chan;Jung, Moon-San;Kwak, Moon-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.457-462
    • /
    • 2006
  • This paper is concerned with the active vibration control experiment on cylindrical shell equipped with Macro Fiber Composite(MFC) actuators. The MFC actuators were glued to the cylindrical shell in circumferential directions. To verify the theoretical result, vibration test using impact hammer and accelerometer was carried out. It was found from experiments that theoretical result predicts experimental result to some extent. The positive position feedback controllers were designed and applied to the test article. It was observed that the resonant amplitude of the fundamental mode was reduced by 20dB thus achieving active vibration control. The active vibration control of the response subject to non resonant excitation has been of interest. We developed the combination of the positive position feedback controller which can cope with the fundamental mode and the positive position feedback controller which can counteract the external disturbance with non resonant frequency. It was found from experiments that the hybrid controller can suppress the vibration amplitude successfully.

  • PDF

Glass powder admixture effect on the dynamic properties of concrete, multi-excitation method

  • Kadik, Abdenour;Boutchicha, Djilali;Bali, Abderrahim;Cherrak, Messaouda
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.671-678
    • /
    • 2020
  • In this work, the dynamic properties of a high performance concrete containing glass powder (GP) was studied. The GP is a new cementitious material obtained by recycling waste glass presenting pozzolanic activity. This eco-friendly material was incorporated in concrete mixes by replacing 20 and 30% of cement. The mechanical properties of building materials highly affect the response of the structure under dynamic actions. First, the resonant vibration frequencies were measured on concrete plate with free boundary conditions after 14, 28 and 90 curing days by using an alternative vibration monitoring technique. This technique measures the average frequencies of several excitations done at different points of the plate. This approach takes into account the heterogeneity of a material like concrete. So, the results should be more precise and reliable. For measuring the bending and torsion resonant frequencies, as well as the damping ratio. The dynamic properties of material such as dynamic elastic modulus and dynamic shear modulus were determined by modelling the plate on the finite element software ANSYS. Also, the instantaneous aroused frequency method and ultrasound method were used to determine the dynamic elastic modulus for comparison purpose, with the results obtained from vibration monitoring technique.

Effect of Bias Magnetic Field on Magnetoelectric Characteristics in Magnetostrictive/Piezoelectric Laminate Composites

  • Chen, Lei;Luo, Yulin
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.347-352
    • /
    • 2015
  • The magnetoelectric (ME) characteristics for Terfenol-D/PZT laminate composite dependence on bias magnetic field is investigated. At low frequency, ME response is determined by the piezomagnetic coefficient $d_{33,m}$ and the elastic compliance $s_{33}^H$ of magnetostrictive material, $d_{33,m}$ and $s_{33}^H$ for Terfenol-D are inherently nonlinear and dependent on $H_{dc}$, leading to the influence of $H_{dc}$ on low-frequency ME voltage coefficient. At resonance, the mechanical quality factor $Q_m$ dependences on $H_{dc}$ results in the differences between the low-frequency and resonant ME voltage coefficient with $H_{dc}$. In terms of ${\Delta}E$ effect, the resonant frequency shift is derived with respect to the bias magnetic field. Considering the nonlinear effect of magnetostrictive material and $Q_m$ dependence on $H_{dc}$c, it predicts the low-frequency and resonant ME voltage coefficients as a function of the dc bias magnetic field. A good agreement between the theoretical results and experimental data is obtained and it is found that ME characteristics dependence on $H_{dc}$ are mainly influenced by the nonlinear effect of magnetostrictive material.

Structural Stability Evaluation of Impeller in Resonant condition due to Diffuser vanes (디퓨저 베인에 의한 공진조건에서의 임펠러 구조 안정성 평가)

  • Kim, Yongse;Kong, Dongjae;Shin, Sangjoon;Im, Kangsoo;Park, Kihoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.877-880
    • /
    • 2017
  • Impeller blades in the centrifugal compressor are subjected to static loads due to the high-speed rotation and steady aerodynamic forces. At the same time, aerodynamic excitations by the interaction between the impeller and the diffuser vanes(DV) periodically excite the impeller blades in resonant conditions, which may lead to high cycle fatigue (HCF) and eventually result in failure of the blades. In order to predict the structural response accurately, the aerodynamic excitation and the major resonant conditions were predicted by performing the unsteady flow analysis and modal analysis using ANSYS. Next, a unidirectional forced vibration analysis was performed by using fluid-structure interaction (FSI) method, and the safety of HCF was evaluated based on the results.

  • PDF

Development of a 4kW, High Efficiency, Series-Resonant DAB Converter (4kW급 고효율 직렬 공진형 DAB 컨버터 개발)

  • Sangmin, Lee;Gil-Dong, Kim;Seung-Hwan, Lee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.498-506
    • /
    • 2022
  • This study proposes a design methodology for bidirectional, series-resonant, dual-active bridge (SRDAB) converters. The circuit parameters of the SRDAB converters are designed by considering the output power and efficiency of the converter. The proposed method can be used to design a high-power, high-efficiency SRDAB converter. A voltage controller is employed to manipulate the output voltage of the converter, and the controller gains are selected using the transfer function and frequency response of the controller. Simulation results show that the output power of the designed SRDAB converter is 2 kW per converter module as designed. In addition, the performance of the voltage controller is evaluated using the simulation and experimental results. The output voltage follows the reference voltage within 10 ms under the step change of the reference command. The output voltage also follows the reference voltage under the step load change. The efficiency of the designed SRDAB converter is 95.6%.

Acoustic Characteristics of the Haegeum Body (해금 몸체의 음향학적 특성에 관한 연구)

  • Noh, Jung-Uk;Park, Sang-Ha;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.7
    • /
    • pp.317-322
    • /
    • 2007
  • This paper is the first step to study on the acoustic characteristics of the Haegeum, a Korean traditional bowed-string instrument. We measured acoustic transfer functions of a Haegeum body using impulse response method. All the measurements are performed in anechoic chamber, INMC, SNU. We examined resonant characteristics of the Haegeum body with obtained transfer functions. Then we performed additional studies which are the Chladni pattern experiments and calculations of air cavity resonances to verify relations between the resonant peaks on the transfer functions and the resonances of each component, such as top plate, air cavity and so on. As a result, we can explain the acoustic characteristics of a Haegeum body and its components.

A high Efficient Solver for High-Frequency Response Analysis of MEMS Resonators (MEMS 공진기의 고주파 응답해석을 위한 고효율 해석기)

  • Ko, Jin-Hwan;Bai, Zhaojun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.467-472
    • /
    • 2007
  • A modern MEMS resonator is a micro-scale structure operated over a high frequency range. In order to predict its resonant behavior in a design process, High-frequency response analysis (Hi-FRA) is demanded. Algebraic substructuring (AS) is known as a fast numerical technique to construct an eigenspace for FR and frequency sweep (FS) algorithm efficiently solves the frequency response system projected on the eigenspace. However, the existing FS algorithm using AS is developed for low-FRA, say over the range 1Hz-2KHz. In this work, we extend the FS algorithm using AS for FRA over an arbitrary frequency range. Therefore, it can be efficiently applied to systems operated at a high frequency, say over the range 230MHz-250MHz. The success of the proposed method is demonstrated by Hi-FRA of a checkerboard resonator.

  • PDF