• Title/Summary/Keyword: Resonant Converter

Search Result 1,041, Processing Time 0.025 seconds

Bidirectional LLC-LC Resonant Converter With Notch Filter (노치 필터 적용 양방향 LLC-LC 공진컨버터)

  • Jang, Ki-Chan;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.411-420
    • /
    • 2021
  • In this paper, bidirectional LLC-LC resonant DC-DC converter with notch filters in the primary side of resonant circuits is proposed. Even if resonant capacitors are used on the primary and secondary sides, the proposed converter can operate with the high gain characteristics of the LLC resonant converter without mutual coupling of resonant capacitors, regardless of the direction of power flow. In addition, by applying notch filters, the proposed converter can operate with a wider gain control range and can cope with overload and short circuit. The analysis and operating characteristics of the proposed bidirectional LLC-LC resonant converter are investigated. A 3.3 kW prototyped bidirectional LLC-LC resonant converter connected to 750 VDC buses is designed and tested to verify the validity and applicability of this proposed converter.

Operational Mode Analysis of the AT Flyback Multi-Resonant Converter (AT 플라이백 다중공진형 컨버터 동작모드 해석)

  • Park, Gwi-Cheol;Kim, Chang-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1250-1254
    • /
    • 2007
  • The multi-resonant(MR) converter has a characteristics that the parasitic components existing in the converter are absorbed into the resonant circuits. The designed MR converter could be got a high efficiency and a high power density because the switching power losses are reduced effectively due to resonant switching circuit. However, the high resonant voltage stress of switching power devices leads to the conduction loss. In this paper, it is proposed the novel alternated(AT) flyback multi-resonant converter to overcome such a drawback. The suggested converter dc input is divided by two series input filter capacitors. The resonant stress voltage is reduced to 2-3 times the input voltage without any complexity and it provides the various circuit schemes in lots of applications. The proposed flyback MR converter is verified through simulation and experiment.

Design Consideration of Half-Bridge LLC Resonant Converter

  • Choi, Hang-Seok
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.13-20
    • /
    • 2007
  • LLC resonant converters display many advantages over the conventional LC series resonant converter such as narrow frequency variation over wide range of load and input variation and zero voltage switching even under no load conditions. This paper presents analysis and design consideration for the half bridge LLC resonant converter. Using the fundamental approximation, the gain equation is obtained, where the leakage inductance in the transformer secondary side is also considered. Based on the gain equation, the practical design procedure is investigated to optimize the resonant network for a given input/output specifications. The design procedure is verified through an experimental prototype of the 115W half-bridge LLC resonant converter.

A Novel Dual Full-Bridge LLC Resonant Converter for CC/CV Charge of the Battery for Electric Vehicles (전기자동차용 배터리의 CC/CV 충전을 위한 새로운 듀얼 풀브리지 LLC 공진형 컨버터)

  • Vuand, Hai-Nam;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.337-338
    • /
    • 2016
  • This paper introduces a novel dual Full-Bridge LLC(FBLLC)resonant converter for CC/CV Charge of the Battery for Electric Vehicles. One full-bridge LLC resonant converter operates with a fixed-resonant network and the other operates with a variable-resonant network for CC and CV mode operations. The proposed converter can achieve ZVS for all the primary switches and exhibits a highefficiency characteristics like aconventional single FBLLC resonant converter. In addition, the variable-resonant network helps minimize the switching-frequency variation. The dual structure makes the proposed converter possible to achieve ZVS and nearly ZCS for all the primary switches in CC mode operation. Since the proposed converter can operate at a fixed frequency in CV mode, it can minimize the circulating current and achieve nearly ZCS. A 6.6 kW prototype converter is implemented to verify the validity of proposed converter and the maximum efficiency of 98.3% was achieved.

  • PDF

Analysis of No-load Characteristics in LLC Resonant Converter (LLC 공진형 컨버터의 무부하 특성 분석)

  • Kwon, Min-Jun;Lee, Woo-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.398-405
    • /
    • 2018
  • LLC resonant converter is popular with industrial fields because it can be achieved high efficiency by zero voltage switching (ZVS). As interest grew, analysis of characteristics in LLC resonant converter have been actively studied. Generally, characteristic of LLC resonant converter is analyzed based on first harmonic approximation(FHA). The FHA analysis represents the characteristics of LLC resonant converter by obtaining the series resonant operation. FHA analysis of LLC resonant converter in load condition is correct. but it is not correct in no load condition. This paper proposed analysis of characteristics considering the parasitic components to overcome the limitation of FHA and analyze no-load characteristics. The validity of the proposed method has been investigated by simulation and experimental results.

NOISE CHARACTERISTICS OF SIMPLIFIED FORWARD-TYPE RESONANT CONVERTER

  • Higashi, Toru
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.559-562
    • /
    • 2000
  • The problem of noise generation due to PWM switched-mode power converter has been widely noticed from the viewpoint of Electromagnetic Interference(EMI). Many kings of topologies for resonant converters have been developed both to overcome this noise problem and to attain high power efficiency. It is reported in references that resonant converters which are derived from PWM converter using resonant switch show much lower noise characteristics than PWM converter, and that current-mode resonant converter is more sensitive to stored charge in rectifying diode than voltage-mode counterpart concerning surge generation at diode’s turn-off. On the other hand, above mentioned resonant converters have defect of high-voltage stress on semiconductor switch and complicated circuit configuration. Hence, the simplified Forward-type resonant converter has been proposed and investigated due to its prominent features of simplicity of circuit configuration, low voltage stress and high stability. However, its noise characteristics still remain unknown. The purpose of this paper is to study quantitatively the noise characteristics of this simplified Forward-type resonant converter by experiment and analysis. The influence of parasitic elements and stored charge in rectifying diode on noise generation has been clarified.

  • PDF

Analysis and Design of a Multi-resonant Converter with a Wide Output Voltage Range for EV Charger Applications

  • Sun, Wenjin;Jin, Xiang;Zhang, Li;Hu, Haibing;Xing, Yan
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.849-859
    • /
    • 2017
  • This paper illustrates the analysis and design of a multi-resonant converter applied to an electric vehicle (EV) charger. Thanks to the notch resonant characteristic, the multi-resonant converter achieve soft switching and operate with a narrowed switching frequency range even with a wide output voltage range. These advantages make it suitable for battery charging applications. With two more resonant elements, the design of the chosen converter is more complex than the conventional LLC resonant converter. However, there is not a distinct design outline for the multi-resonant converters in existing articles. According to the analysis in this paper, the normalized notch frequency $f_{r2n}$ and the second series resonant frequency $f_{r3n}$ are more sensitive to the notch capacitor ratio q than the notch inductor ratio k. Then resonant capacitors should be well-designed before the other resonant elements. The peak gain of the converter depends mainly on the magnetizing inductor ratio $L_n$ and the normalized load Q. And it requires a smaller $L_n$ and Q to provide a sufficient voltage gain $M_{max}$ at ($V_{o\_max}$, $P_{o\_max}$). However, the primary current increases with $(L_nQ)^{-1}$, and results in a low efficiency. Then a detailed design procedure for the multi-resonant converter has been provided. A 3.3kW prototype with an output voltage range of 50V to 500V dc and a peak efficiency of 97.3 % is built to verify the design and effectiveness of the converter.

Simple High Efficiency Full-Bridge DC-DC Converter using a Series Resonant Capacitor

  • Jeong, Gang-Youl;Kwon, Su-Han;Park, Geun-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.100-108
    • /
    • 2016
  • This paper presents a simple high efficiency full-bridge DC-DC converter using a series resonant capacitor. The proposed converter achieves the zero voltage switching of the primary switches under a wide range of load conditions and reduces the high circulating current in the freewheeling mode using the leakage resonant inductance and the series resonant capacitor. Thus, the proposed converter overcomes the drawbacks of the conventional full-bridge DC-DC converter and improves its overall system efficiency. Its structure is simplified by using the leakage inductance of the transformer as the resonant inductance and omitting the DC output filter inductance. Also it can operate over a wide range of input voltages. In this paper, the operational principle, analysis and design example are described in detail. Finally, the experimental results from a 650W (24V/27A) prototype are demonstrated to confirm the operation, validity and features of the proposed converter.

An improved LCLC Resonant Converter using Auxiliary winding of Resonant Inductor (공진 인덕터 보조권선을 이용한 개선된 LCLC 공진형 컨버터)

  • 백주원;이영식;정창용;조정구;김흥근
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.472-475
    • /
    • 1999
  • An improved series-parallel resonant converter using auxiliary winding of resonant is presented. The conventional series-parallel resonan converter and newly developed converter are compared for high voltage application. This proposed converter gives several merits such a wide load ranges, small circulating current, low peak voltage at no load. Two experimental results for the proposed converter and conventional one are presented for conventional LCC type converter and the proposed one.

  • PDF

Comparison of Higher-Order Resonant Topologies for Contact-less Power Converter Systems (무접점 전력용 변환기의 다중공진형 토폴로지 비교)

  • Thenathayalan, Daniel;Park, Joung-Hu
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.323-324
    • /
    • 2014
  • A higher-order power converter topology for an extremely low coupling (less than 0.15) transformer with high efficiency and wide air-gap (23 mm) is presented in this paper. Among the typical resonant converter topologies for contact-less power transferring systems, Series-Series Resonant Converter (SSRC) and Series-Parallel Resonant Converter (SPRC) are widely used in number of power electronic applications. However, when coupling coefficient of a transformer is seriously low (k<0.5), the series-series resonant converter will possibly operate at short circuited condition because of the small magnetizing impedance. To solve this problem, a modified and improved topology of seventh-order resonant converter for contact-less power converter system is proposed and the results are presented.

  • PDF