• Title/Summary/Keyword: Resonance linear generator

Search Result 19, Processing Time 0.022 seconds

Analysis and Experiments of the Linear Electrical Generator in Wave Energy Farm utilizing Resonance Power Buoy System

  • Park, Sang-Shin;Park, Se Myung;Jung, Jongkyo;Kim, Jin Ho
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.250-254
    • /
    • 2013
  • In this research, the linear electrical generator in wave energy farm utilizing resonance power buoy system is studied. The mechanical resonance characteristics of the buoy and the wave are analyzed to maximize the kinetic energy in a relatively small wave energy area where WRPS is operated. In this research, we chose an analog model of the linear electrical generator of which size is one-hundredth of an actual size of it in WPRS (Wave energy farm utilizing Resonance Power buoy System) prior to verifying the characteristics of actual model of linear electrical generator in WRPS. In addition, the finite element analysis is conducted using commercial electromagnetic analysis software named MAXWELL to examine the electric characteristic of linear generator. Finally, for the verification of dynamic and electric characteristics of linear generator, the prototype was manufactured and the experiments to measure the displacement and the output electric power were performed.

Robust Optimum Design of Resonance Linear Electric Generator for Vehicle Suspension (차량 노면 진동을 이용한 공진형 선형 발전기 시스템의 강건최적설계)

  • Choi, Ji Hyun;Kim, Jin Ho;Park, Sang-Shin;Seo, TaeWon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.403-407
    • /
    • 2014
  • To use vibration energy to generate electricity, a resonance vertical linear electric generator was applied to the suspension of a vehicle in a previous paper. However, the working conditions, including mass change in the vehicle body related to the cargo on board, number of passengers and the temperature difference caused by the operating environment, can influence the permanent magnet, which is the main component of the electric generator. Therefore, a robust optimum design is required to minimize the influences from the diverse operation conditions and maximize the electromotive force of the electric generator. In this paper, a resonance linear electric generator is introduced. Vibration response analysis to find the input velocity of the electric generator and an electromagnetic transient analysis to apply changes in the performance of the permanent magnet are performed. Finally, the optimum value of each design variable is derived using a Taguchi method.

Multi Degree of Freedom Linear Electric Generator for Structural Concerns and Electric Generation Improvement of the Linear Electric Generator in a Vehicle Suspension (차량 현가장치 선형 발전기 구조 검토 및 발전량 향상을 위한 다자유도 선형 발전기)

  • Choi, Ji-Hyun;Kim, Jin Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5452-5459
    • /
    • 2014
  • A resonance linear electric generator in a vehicle suspension is a system that performs self-electric generation by collecting the vibration energy when a vehicle runs on a road, and takes the resonance phenomenon to derive large electric generation from slight road surface vibrations. In this paper, the motions of an armature in three different electric generator structures were simulated and the actual generation quantity was calculated and compared with these results. Furthermore, when the vehicle runs on the road, the design improvement for a multi-degree of freedom electric generator was conducted to make the resonance respond to various excitation frequencies, and the change in the resonance points and generation quantity were identified.

Design of Resonance Linear Electric Generator System for Vibration Energy Harvesting in Vehicle Suspension (차량 주행시 진동에너지 하베스팅을 위한 현가장치 선형 발전기 시스템의 설계)

  • Choi, Ji-Hyun;Shin, Doo-Beom;Kim, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3357-3362
    • /
    • 2014
  • The purpose of this research was to develop a resonance electric power generator to harvest vibration energy while the vehicle is driving on a road surface. The electric power generator in the paper was designed using the resonance phenomenon to effectively respond to vibrations from the road surface, which is a comparatively small energy source. Vibration displacement analysis using MATLAB and transient analysis using Ansys MAXWELL, which is a commercial electromagnetic analysis program, was performed to predict the input velocity for the generator and verify the electric power generation. If this electric power generator is applicable to hybrid or electric vehicles, it can be valuable around an automotive electric system and help maintain the performance of the vehicle battery.

Extraction of Wave Energy Using the Coupled Heaving Motion of a Circular Cylinder and Linear Electric Generator (원기둥과 선형발전기의 연성 수직운동을 이용한 파 에너지 추출)

  • Cho, Il-Hyoung;Kweon, Hyuck-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.9-16
    • /
    • 2011
  • The feasibility of wave energy extraction from a heaving truncated cylinder and the corresponding response of the linear electric generator (LEG) composed of spring, magnet, and coil has been investigated in the frame of three-dimensional linear potential theory. The heaving motion of a circular cylinder is calculated by means of the matched eigenfunction expansion method. Further, the analytical results are validated by numerical results using the ANSYS AQWA commercial code. By the action of a heaving circular cylinder, the magnet suspended by a spring can slide vertically inside the heaving cylinder. The mechanical power is extracted from the magnet motion relative to the coil/stator which is attached to the cylinder. The coupled ODE of a heaving cylinder and LEG system in waves is derived to obtain the magnet motion relative to a cylinder. To maximize the relative motion of the magnet, both the buoy draft and the LEG system parameters (spring stiffness, damping) should be selected properly for generating the double resonance considering the peak frequency of the target spectrum.

Experimental Study for the Resonance Effect of the Power Buoy Amplitude (공진형 전력부이의 상하변위증폭 효과에 관한 실험적 연구)

  • Kweon, Hyuck-Min;Koh, Hyeok-Jun;Kim, Jung-Rok;Choi, Young-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.585-594
    • /
    • 2013
  • In this study, laboratory experiments and numerical simulations were conducted to test the performance of resonance power buoy system proposed by Kweon et al.(2010). The system is composed of a linear generator and a mooring buoy. The mover of the linear generator mainly has heave motion driven by vertical oscillation of the buoy. In this system, the velocity discrepancy between the mover and the buoy makes electricity. However, ocean wave energy as a natural resource around Korean peninsula is comparatively small and the driving force for producing electricity is not enough for commercialization. Therefore, it is necessary that the buoy motion be amplified by using resonance characteristics. In order to verify the resonance effects on the test power buoy, the experimental investigations were conducted in the large wave flume (length of 110 m, width of 8 m, maximum depth of 6 m) equipped with regular and random plunger wave generator. The resonance draft of test power buoy is designed for the corresponding period of incident wave, 1.96 sec. Regular wave test results show that the heave response amplitude operator(RAO) by a test buoy has the amplification of 5.66 times higher compared to the wave amplitude at the resonance period. Test results of random waves show that the buoy has the largest spectrum area of 20.73 times higher at the point of not the resonance period but the shorter one of 1.85 sec. Therefore this study suggests the resonance power buoy for wave power generation for commercial application in the case of the coastal and oceanic area with smaller wave energy.

Study on the Buoy and Vibration System in Broadband Ocean Wave Power Generator (광대역 파력발전기의 진동시스템과 부양 체에 대한 연구)

  • Lee, Hong-Chan;Yea, Kyung-Soo;Hwang, Sung-Il;Han, Ki-Bong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.780-787
    • /
    • 2012
  • In general, the ocean wave vibration power generator consists of buoy, vibration system and linear generation system. It maximized energy efficiency by using resonance phenomenon that turned to the natural frequency of vibration system and frequency of ocean wave energy. But it is difficult to obtain efficiently energy from ocean wave because the frequency of ocean wave changes from moment to moment. In this paper, we study the buoy and vibration system of ocean wave power generator to solve these problem. Firstly, we designed the buoy that gives rise to resonance between ocean wave and buoy. Secondly, we designed vibration system that is occurred to resonance between buoy and vibration system. And then the relative velocity between the buoy and magnetic of ocean wave vibration generator increases and the relative displacement between buoy and ocean wave decreases at the same time. As a result, the method which is proposed in this paper has merits not only securing its stability from harsh ocean wave environment but also obtaining more kinetic energy from ever-changing ocean wave.

Experimental study of wave energy extraction by a dual-buoy heaving system

  • Kim, J.;Koh, H.J.;Cho, I.H.;Kim, M.H.;Kweon, H.M.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.25-34
    • /
    • 2017
  • The concentric dual-buoy Wave Energy Converter (WEC), which consists of external buoy (hallow-cylinder) with toroidal appendage and cylindrical internal buoy within the moon-pool is suggested in this research and its performance in various wave conditions is studied. The Linear Electric Generator (LEG), consisting of a permanent magnet and coils, is used as a direct Power Take-Off (PTO) system. To maximize the electrical energy extracted from the PTO system, the relative heave motions between the dual buoys must be highly amplified by the multiple resonance phenomena of dual-buoy and internal-fluid motions. The high-performance range can be widened by distributing those natural frequencies with respect to the peak frequency of the wave spectrum. The performance of the newly developed dual-buoy WEC was measured throughout the systematic 1:5.95-model test in regular and irregular waves conducted in a wave tank at Seoul National University. The model-test results are also validated by an independently developed numerical method.

Comparison and Analysis for the Topology of Bladeless Wind Power Generator (블레이드리스 풍력발전기의 토폴로지에 관한 비교·분석)

  • Junhyuk Min;Sungin Jeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.147-154
    • /
    • 2024
  • This study focuses on the modeling and analysis of the linear generator for a bladeless wind power generation to overcome the limitations and drawbacks of conventional wind turbines. A bladeless wind power generation system has the advantages of low land requirement for installation and maintenance cost compared to a blade wind power turbine. Nevertheless, question concerning the generator topology are not satisfying answered. The goal of the research is to compare and analyze the characteristics of horizontal and vertical structures of linear generator for bladeless wind power systems. The proposed topology will be analyzed using magnetic energy by equivalent magnetic circuit method, and then it has been compared and evaluated by finite element method. The results of this project will give elaborate information about new generator structures for wind power system and provide insights into the characteristics of bladeless wind power generation.

Design of Wave Energy Extractor with a Linear Electric Generator -Part I. Design of a Wave Power Buoy (선형발전기가 탑재된 파랑에너지 추출장치 설계 -I. 파력 부이 설계)

  • Kim, Jeong Rok;Bae, Yoon Hyeok;Cho, Il Hyoung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.146-152
    • /
    • 2014
  • Design procedure of WEC (wave energy converter) using the heaving motion of a floating cylinder-type buoy coupled with LEG (linear electric generator) system is introduced. It is seen that the maximum power can actually be obtained at the optimal conditions ($c_{PTO}=b_T$, ${\omega}={\omega}_N$). Then, based on the developed theory, several design strategies are proposed to further enhance the maximum PTO (power take off), which includes the intentional mismatching with the heave natural frequency, which is 15% higher value than the peak frequency of input velocity spectrum. By using the intentional mismatching strategy, the generated power is actually increased and the corresponding draft as well as the required PTO damping value is significantly reduced, which is a big advantage in manufacturing the WEC with practical LEG (linear electric generator) system.