• Title/Summary/Keyword: Resonance frequency.

Search Result 2,710, Processing Time 0.029 seconds

A Study on Frequency-Modulated Methods for Reducing Acoustic Resonance in HID Lamp (고압방전램프의 음향공명감소를 위한 주파수변조에 관한 연구)

  • Kim, Gi-Jung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.12
    • /
    • pp.622-626
    • /
    • 2001
  • HID(high intensity discharge)lamps are high pressure mercury lamp, high pressure sodium lamp and metalhalide lamp. metalhalide lamp among these lamps has considered to be one of the most effective artificial light sources and this lamp has good efficiency, good color rendition and good focusing capability, But the shortcorning of metalhalide lamp is known as acoustic resonance phenomena in the discharge tube when lighted by electronic ballast and then acoustic resonance cause various problems such as the arc instability, light output fluctuations. In this paper, to reduce the acoustic resonence phenomena, the electronic ballast was designed by three methods for high frequency operation wish frequency-modulated sinusodial waves in acoustic resonance frequency band. These frequency-modulated methods are resonance frequency and resonance frequency, resonance frequency and non-resonance frequency non-resonance frequency and non-resonance frequency Experiment results could't show the Presence of acoustic resonance visually and it proved that the resonance-generating conditions can be avoided by continuously changing the two operating frequencies in acoustic resonance band (20.59kHz∼94.2kHz).

  • PDF

Relationship Between the Resonance Frequency and QTS for Microspeaker (마이크로스피커에서 공명진동수와 QTS 사이의 연관성)

  • Oh, Sei-Jin
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.403-409
    • /
    • 2011
  • Micro speakers are used to reproduce sound in small electric and information and communications devices, such as cellular phones, PMPs, and MP3 players. The acoustical properties and sound quality, which are changed due to the decreased size of the speaker, are often adjusted varying the type and thickness of the diaphragm. The most widely used diaphragm material is thin polymer. It was previously reported by the author of this paper that the resonance frequency of a micro speaker is changed by the type and thickness of a polymer diaphragm. In this paper, the frequency response near the resonance frequency of a micro speaker was studied as functions of the type and thickness of the polymer diaphragm. While $R_{max}$ and $R_{DC}$ were affected by the type and thickness, an analysis of the electrical impedance curve revealed that $R_o(= R_{max}/R_{DC})$ and ${\Delta}f$ were not changed. Thus, $Q_{TS}$ which was function of $R_o$, ${\Delta}f$, and the resonance frequency, is only related to the resonance frequency. The increase of the resonance frequency led to a proportional rise of $Q_{TS}$. The change of the frequency response near the resonance frequency was not dependent on the type or thickness of the polymer diaphragm, but was affected by the resonance frequency.

Adaptive Suppression of Mechanical Resonance in High-Density Disk Drives (고밀도 디스크 드라이브의 적응형 공진 보상 알고리즘)

  • 강창익;김창환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.9
    • /
    • pp.679-691
    • /
    • 2003
  • The band-width of disk drive servo system is rapidly increasing for the robustness to external disturbance as the track density is increasing. The increase of the band-width may cause mechanical resonance of an actuator. In disk drive servo system, a notch filter is usually used to suppress the mechanical resonance of the actuator. However, the resonance frequency differs from drive to drive because of manufacturing tolerance and varies with temperature even within a single drive. The variation of resonance frequency degrades the suppression performance of the notch filter. In this paper, we present an adaptive digital notch filter that identifies the resonance frequency of the disk drive servo actutaor precisely and adjusts automatically its center frequency. For this, we design an adaptive FIR digital filter for the estimation of the resonance frequency. The estimation filter identifies the resonance frequency adaptively using the output signal generated from the servo system, which is excited with an excitation signal including all the expected resonance frequency components. We prove mathematically the convergence of the resonance frequency estimation filter. Furthermore, in order to demonstrate the practical use of our work, we present some experimental results using a commercially available disk drive.

Acoustic resonance by length of acoustic baffle at Finned Tube bank (핀-튜브군에서 배플 길이에 따른 음향공진)

  • 방경보;류제욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.98-103
    • /
    • 2003
  • This paper presents phenomena of vibration and noise due to acoustic resonance in tube bank of a HRSG. Acoustic resonance is may arise when the vortex shedding frequency coincides with the acoustic natural frequency. At this tube bank, dominant frequencies of vibration in this system were 43.5, 67.5㎐. The 3$\^$rd/ acoustic natural frequency calculated was 68.5㎐. When the difference of vortex shedding frequency and acoustic natural frequency is within ${\pm}$20%, acoustic resonance could occur. In this system, in order to prevent acoustic resonance, acoustic baffle was installed in the tube bank before operating. But acoustic resonance occurred. So, we evaluate the effect of acoustic mode due to baffle extension length. After investigating, we did revise acoustic baffle to eliminate acoustic resonance effectively.

  • PDF

A Study on the Subsynchronous Resonance by Flexible Frequency Operation (주파수 유연화 운영에 따른 발전기 축 비틀림에 관한 연구)

  • Cho, Yoon-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.62-68
    • /
    • 2015
  • Subsynchronous Resonance is a condition where the electrical power systems composed of generator and transmission line exchange energy with mechanical turbine-generator system at the frequency of the combined below the subsynchronous frequency. Therefore, the frequency of power systems should be associated with the subsynchronous resonance. This paper describes subsynchronous resonance by flexible frequency operation. It focuses on the characteristics and behavior of subsynchronous resonance. The subsynchronous resonance is being conducted by real-time digital simulator and the IEEE benchmark model for subsynchronous resonance have been utilized for the test systems.

Acoustic resonance by Inserting Anti-noise Baffle in the Tube Bank of Boiler of a Large Fossil Power Plant (대형석탄화력발전용 보일러 관군의 Anti-Noise Baffle 설치에 따른 음향공진)

  • Bang, Kyung-Bo;Kim, Cheol-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.178-183
    • /
    • 2004
  • This paper presents phenomena of vibration and noise due to acoustic resonance in tube bank of a large fossil power plant. The phenomena of acoustic resonance may arise when the vortex shedding frequency coincides with the acoustic natural frequency. In this system dominant frequency of vibration and noise was 37.5Hz. The $3^{rd}$ acoustic natural frequency calculated was 37.2 Hz. When the difference of vortex shedding frequency and acoustic natural frequency is within ${\pm}20%$, acoustic resonance could occur. If system is the state of acoustic resonance, vibration and noise become large. In order to prevent acoustic resonance, anti-noise baffle should be installed in the tube bank. In the case of installing baffle, we should consider the number of baffle and the effect of acoustic mode due to baffle extension length. To do this, we did acoustic mode analysis. After installing anti-noise baffle, acoustic resonance was disappeared and vibration magnitude and noise level was reduced dramatically.

  • PDF

A Case Study on the vibration and noise by acoustic resonance in the tube bank of a boiler of 75MW power plant (75MW 급 발전용 보일러 관군에서의 음향공진에 의한 진동/소음 사례연구)

  • Kim, Cheol-Hong;Bang, Kyung-Bo;Ju, Young-Ho;Byun, Hyung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.150-155
    • /
    • 2000
  • This paper presents phenomena of vibration and noise due to acoustic resonance in tube bank of a power plant. Acoustic resonance is may arise when the vortex shedding frequency coincides with the acoustic natural frequency. At the resonance, the value of vibration in this system was 595 ${\mu}m$, p-p and the sound pressure level was maximum 103 dBA. And the resonance frequency was found to be 35 Hz. When the difference of vortex shedding frequency and acoustic natural frequency is within ${\pm}20%$, acoustic resonance is possible. In this system, the difference of these frequencies was 1.8%. We can evaluate the possibility of acoustic resonance by using damping parameter. We did eliminate acoustic resonance by installing baffle in tube bank. After installing baffle, the level of vibration and noise was reduced dramatically.

  • PDF

Analysis of the Effect of Small-Bore Piping Resonance Frequency on Defect of Welding Area (용접부의 결함이 소구경배관의 공진 주파수에 미치는 영향 분석)

  • Yoon, Min Soo;Song, Ki O;Lee, Jae Min;Ha, Seung Woo;Cho, Sun Young
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.9-14
    • /
    • 2018
  • The piping system of a nuclear power plant plays a role of transferring high energy fluid to equipment and various devices. The safety and soundness of these piping systems are very closely related to the operability of the power plant. In the case of a welded part of a small diameter pipe, it may grow as a microcrack due to a lack of penetration, and it may grow to a size that affects the safety of the pipe due to the influence of mechanical vibration and fatigue load. Resonance refers to an increase in energy as the natural frequency of an object coincides with the frequency applied to the external force. When this resonance occurs, the frequency is the resonance frequency. In this study, when defects exist in the welds of small diameter pipe, the natural frequency of the pipe changes and resonance may occur. Since these resonances are likely to cause fatigue damage to the piping, resonance frequency changes due to the size and shape of the defects are analyzed and evaluated. As a result of the vibration test, the resonance frequency tended to decrease as the depth of the defect deepened, and the influence was larger when the defect existed at the bottom of the top of the trough. Also, it was confirmed that the Transverse cracks had an effect on the resonance frequency in the presence of the cracks in the weld bead, compared to the longitudinal cracks. As a result of this study, it is expected that the cause of the defect and the condition of the pipe can be monitored because the resonance frequency tendency according to the shape of the crack is analyzed.

Effects of Calcining Temperature on Planar Coupling Factor and Resonance Charcteristics of BaTiO3 (하소온도가 BaTiO3 세라믹의 Kp와 공진특성에 미치는 영향)

  • 정수태;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.6
    • /
    • pp.66-70
    • /
    • 1986
  • The calcining temperature ranging from 900$^{\circ}C$ to 1300$^{\circ}C$ affected on the planar coupling factor and resonance characteristics of BaTiO3 ceramics doped with 0.2 wt% MnO2 have been investigated. Dielectric constant planar coupling factor and anti-resonance frequency of the sample increased with the calcining temperature up to 1,200$^{\circ}C$ and decreased above that temperature but the resonance frequency decreased slightly with the increasing calcining temperature. The planar coupling factor and anti-resonance frequency increased with the sintered density and dielectric constant while the resonance frequency was almost constant. The resonance and anti-resonance frequency increased with the sample temperature.

  • PDF

A STUDY ON THE MEASUREMENT OF THE IMPLANT STABILITY USING RESONANCE FREQUENCY ANALYSIS (공진 주파수 분석법에 의한 임플랜트의 안정성 측정에 관한 연구)

  • Park Cheol;Lim Ju-Hwan;Cho In-Ho;Lim Heon-Song
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.2
    • /
    • pp.182-206
    • /
    • 2003
  • Statement of problem : Successful osseointegration of endosseous threaded implants is dependent on many factors. These may include the surface characteristics and gross geometry of implants, the quality and quantity of bone where implants are placed, and the magnitude and direction of stress in functional occlusion. Therefore clinical quantitative measurement of primary stability at placement and functional state of implant may play a role in prediction of possible clinical symptoms and the renovation of implant geometry, types and surface characteristic according to each patients conditions. Ultimately, it may increase success rate of implants. Purpose : Many available non-invasive techniques used for the clinical measurement of implant stability and osseointegration include percussion, radiography, the $Periotest^{(R)}$, Dental Fine $Tester^{(R)}$ and so on. There is, however, relatively little research undertaken to standardize quantitative measurement of stability of implant and osseointegration due to the various clinical applications performed by each individual operator. Therefore, in order to develop non-invasive experimental method to measure stability of implant quantitatively, the resonance frequency analyzer to measure the natural frequency of specific substance was developed in the procedure of this study. Material & method : To test the stability of the resonance frequency analyzer developed in this study, following methods and materials were used : 1) In-vitro study: the implant was placed in both epoxy resin of which physical properties are similar to the bone stiffness of human and fresh cow rib bone specimen. Then the resonance frequency values of them were measured and analyzed. In an attempt to test the reliability of the data gathered with the resonance frequency analyzer, comparative analysis with the data from the Periotest was conducted. 2) In-vivo study: the implants were inserted into the tibiae of 10 New Zealand rabbits and the resonance frequency value of them with connected abutments at healing time are measured immediately after insertion and gauged every 4 weeks for 16 weeks. Results : Results from these studies were such as follows : The same length implants placed in Hot Melt showed the repetitive resonance frequency values. As the length of abutment increased, the resonance frequency value changed significantly (p<0.01). As the thickness of transducer increased in order of 0.5, 1.0 and 2.0 mm, the resonance frequency value significantly increased (p<0.05). The implants placed in PL-2 and epoxy resin with different exposure degree resulted in the increase of resonance frequency value as the exposure degree of implants and the length of abutment decreased. In comparative experiment based on physical properties, as the thickness of transducer increased, the resonance frequency value increased significantly(p<0.01). As the stiffness of substances where implants were placed increased, and the effective length of implants decreased, the resonance frequencies value increased significantly (p<0.05). In the experiment with cow rib bone specimen, the increase of the length of abutment resulted in significant difference between the results from resonance frequency analyzer and the $Periotest^{(R)}$. There was no difference with significant meaning in the comparison based on the direction of measurement between the resonance frequency value and the $Periotest^{(R)}$ value (p<0.05). In-vivo experiment resulted in repetitive patternes of resonance frequency. As the time elapsed, the resonance frequency value increased significantly with the exception of 4th and 8th week (p<0.05). Conclusion : The development of resonance frequency analyzer is an attempt to standardize the quantitative measurement of stability of implant and osseointegration and compensate for the reliability of data from other non-invasive measuring devices It is considered that further research is needed to improve the efficiency of clinical application of resonance frequency analyzer. In addition, further investigation is warranted on the standardized quantitative analysis of the stability of implant.