• Title/Summary/Keyword: Resonance assignments

Search Result 68, Processing Time 0.023 seconds

Structural Characterization of the J-domain of Tid1, a Mitochondrial Hsp40/DnaJ Protein

  • Sim, Dae-Won;Jo, Ku-Sung;Ryu, Kyoung-Seok;Kim, Eun-Hee;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.16 no.1
    • /
    • pp.22-33
    • /
    • 2012
  • Tid1, belonging to the Hsp40/DnaJ family of proteins, functions as a cochaperone of cytosolic and mitochondrial Hsp70 proteins. In particular, the N-terminal J-domain of Tid1 (Tid1-JD) constitutes the major binding sites for proteinprotein interactions with client proteins, including p53, as well as its partner chaperone, Hsp70. In the present study, soluble, recombinant protein of Tid1-JD could be obtained by using the pCold vector system, and backbone NMR assignments were completed using the isotope $[^{13}C/^{15}N]$-enriched protein. Far-UV CD result implied that Tid1-JD is an ${\alpha}$-helical protein and the secondary structure determined using chemical shift data sets indentified four ${\alpha}$-helices with a loop region containing the HPD (conserved tripeptide of His, Pro and Asp) motif. Additionally, NMR spectra under different conditions implied that the HPD motif, which is a critical region for protein-protein interactions of Tid1-JD, would possess dynamic properties.

Backbone 1H, 15N, and 13C resonance assignments and secondary structure prediction of NifU-like protein, HP1492 from Helicobacter Pylori

  • Lee, Ki-Young;Kang, Su-Jin;Bae, Ye-Ji;Lee, Kyu-Yeon;Kim, Ji-Hun;Lee, Ingyun;Lee, Bong-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.2
    • /
    • pp.105-110
    • /
    • 2013
  • HP1492 is a NifU-like protein of Helicobacter pylori (H. pylori) and plays a role as a scaffold which transfer Fe-S cluster to Fe-S proteins like Ferredoxin. To understand how to bind to iron ion or iron-sulfur cluster, HP1492 was expressed and purified in Escherichia coli (E. coli). From the NMR measurement, we could carry out the sequence specific backbone resonance assignment of HP1492. Approximately 91% of all resonances could be assigned unambiguously. By analyzing results of CSI and TALOS from NMR data, we could predict the secondary structure of HP1492, which consists of three ${\alpha}$-helices and three ${\beta}$-sheets. This study is an essential step towards the structural characterization of HP1492.

Transverse relaxation-optimized HCN experiment for tautomeric states of histidine sidechains

  • Schmidt, Holger;Himmel, Sebastian;Walter, Korvin F.A.;Klaukien, Volker;Funk, Michael;Lee, Dong-Han
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.12 no.2
    • /
    • pp.89-95
    • /
    • 2008
  • Function of protein is frequently related with tautomeric states of histidine sidechains. Thus, several NMR experiments were developed to determine the tautomeric states of histidines. However, poor sensitivity of these experiments caused by long duration of magnetization transfer periods is unavoidable. Here, we alleviate the sensitivity of HCN experiment for determining the tautomeric states of histidine residues using TROSY principle to suppress transverse relaxation of $^{13}C$ spins during long polarization transfer delays involving $^{13}C-^{15}N$ scalar couplings. In addition, this experiment was used to assign the sidechain resonances of histidines. These assignments can be used to follow the pH-titration of histidine sidechains.

NMR Structural Analysis and 3D Homology Modelling of APG8a from Arabidopsis thaliana

  • Chae Young-Kee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.1
    • /
    • pp.96-104
    • /
    • 2006
  • The gene coding for APG8a (At4g21980), a protein from Arabidopsis thaliana, is involved in the autophagy process. The protein is an interesting candidate for structure determination by NMR spectroscopy. Toward this end, APG8a has been produced recombinantly in Escherichia coli and typical NMR experiments such as $^{15}N-HSQC$, HNCA, HN(CO)CA, CBCA(CO)NH, HCCH-TOCSY, HNCO were performed. The backbone resonances, HN, N, CA, CB, and C' were sequence-specifically assigned, and the secondary structures including 3 $\alpha$ helices and $4\beta$ strands were deduced based on the assignments. Due to the intrinsic flexibility or the effect of the denaturant, the backbone resonances were not fully observed. Since the structure calculation by NMR data was not possible, the 3-dimensional model was built based on the sequence homology, and compared with the NMR results. The overall structure of the model could explain and complement the NMR derived secondary structures.

  • PDF

Quantitative NMR Analysis of PTMEG compounds

  • Kim, Gilhoon;Won, Hoshik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.1
    • /
    • pp.7-12
    • /
    • 2016
  • PTMEG(Polytetramethylene ether glycol) is a polymer compound widely used as a wide range of applications in the textile industry. PTMEG substance carrying various 1,800~2,000 molecular weight are mainly used as the raw material of the spandex production. Molecular weight and degree of polymerization value for 4 different PTMEG samples under pilot plant scale synthetic process were determined by a new quantitative NMR method. In NMR experiments, p-toluenesulfonic acid(TSOH) was used for external standard material of PTMEG quantitative analysis. were measuring The concentration of the primary standard TSOH was measured by UV/Vis spectroscopy. By using NMR peak assignments and the integral values of designated proton NMR peaks, We were able to measure the % composition of the synthetic PTMEG polymers, concentrations, molecular weight and the degree of polymerization that show the synthetic process of each manufacturing pilot plant. By utilizing a newly developed quantitative NMR method were able to obtain the molecular weight of PTMEG samples within 0.08 error % range.

Heme proton resonances assignments based on nuclear Overhauser effect

  • Li, Chun-Ri;Kim, So-Sun;Lu, Ming;Park, Jang-Su
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.11 no.1
    • /
    • pp.48-55
    • /
    • 2007
  • NMR signals of two hemes were assigned to particular hemes in the crystal structures by nuclear Overhauser effect experiments. The results showed that the hemes with the highest and lowest redox potentials in the one-electron reduction process correspond to the hemes I and IV in the crystal structure.

  • PDF

Complete assignments of $^{1}H$ and $^{13}C NMR$ spectra of Chivosazole F

  • Park, Jung-Rae;Jongheonn Shin;Kim, Jin-Cheol;Ahn, Jong-Woong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.5 no.2
    • /
    • pp.91-98
    • /
    • 2001
  • The $^1$H and $^{13}$ C NMR spectra of chivosazole F from Sorangium cellulosum were completely assigned by a combination of ID and 2D NMR techniques. The configurations of double bonds were confirmed from the ROESY spectra. The stereochemistry at asymmetric carboncenters was partially assigned on the basis of the results of NOE analysis.

  • PDF

Complete Assignment of the $^H1$ and $^{13}C$ NMR Spectra of a Sucrose Ester from Euphorbia Lathyris L.

  • Jung, Min-Hwan;Kim, Hyun-Sik;Sangdoo Ahn;Kim, Cheong-Taek;Jin, Mu-Hyun;Yim, Yong-Hyeon;Kim, Young-Kook;Jong hoa Ok
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.4 no.2
    • /
    • pp.125-132
    • /
    • 2000
  • The detailed $^1$H and $^{13}$ C NMR assignments of a novel sucrose isovaleryl ester isolated from the seed of Euphorbia Lathyris L., were achieved by one-and two-dimensional techniques. The new sucrose ester was characterized as an $\alpha$-D-glucopyranoside, 3,4,6-tris-O-(3-methyl-1-oxobutyl)-$\beta$-D-fructofuranosyl, 2,6-bis(3-methylbutanoate); sucrose 4,7,8,11,12-pentaisovalerate by MS and NMR experiments.

  • PDF

NMR Signal Assignments of the Stereochemical Cycloadducts of Bicyclolactone via Diels-Alder Reaction

  • Kim, Dae-Sung;Seo, Chan-Woo;Cho, Cheon-Gyu;Won, Ho-Shik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.8 no.1
    • /
    • pp.62-69
    • /
    • 2004
  • Bicyclolactones obtained from the Diels-Alder cycloaddition of 3,5-dibromo-2-pyrone can undergo various palladium catalyzed cross coupling reactions to afford aryl bicyclolactones. The resulting coupled products can be readily converted into various 3-OH cyclohexenes via lactone ring openings, while those bearing dienyl units underwent highly diastereoselective Diels-Alder cycloadditions with selected dienophiles to funish multiply functionalized polycarbocycles. Bromo-bicyclic diene furnished two different diastereomers endo-form (62%) and exo-form (38%) upon cycloadditions with N-Et maleimide (NEM), and their stereochemistries were identified with NMR.

  • PDF

Simultaneous Observation of Fe-F and F-Fe-F Stretching Vibrations of Fluoride Anion Ligated Tetraphenylporphyrin Iron(Ⅲ) by Resonance Raman Spectroscopy

  • 이인숙;신지영;남학현;김도균;팽기정
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.7
    • /
    • pp.730-733
    • /
    • 1997
  • Monofluoroiron(Ⅲ) tetraphenylporphyrin, Fe(TPP)F, and difluoroiron(Ⅲ) tetraphenylporphyrin, [Fe(TPP)F2]- were generated in a various non-aqueous solvents by the reaction between Fe(TPP)Cl and tetrabutylammonium fluoride TBAF 3H2O. Formation of the these complexes was detected by the appearance of the ν(F-Fe) (ν, stretching vibration) at 506 cm-1 for Fe(TPP)F and the ν(F-Fe-F) at 448 cm-1 for [Fe(TPP)F2]-, simultaneously, with 441.6 nm excitation by Resonance Raman (RR) spectroscopy. These assignments were confirmed by observed frequency shifts due to 56Fe/54Fe and TPP/TPP-d8/TPP-N15 isotopic substitutions. Difluoroiron complex is an iron(Ⅲ) high-spin complex with the oxidation sensitive band at 1347 cm-1 for ν4 and core size/spin state sensitive band at 1541 cm-1 for ν2.