• Title/Summary/Keyword: Resonance Spectrum

Search Result 410, Processing Time 0.022 seconds

Decoupling of Background and Resonance Scatterings in Multichannel Quantum Defect Theory and Extraction of Dynamic Parameters from Lu-Fano Plot

  • Lee, Chun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.891-896
    • /
    • 2009
  • Giusti-Suzor and Fano introduced translations of the scales of Lu-Fano plots by phase renormalization in order to decouple the intra- and inter-channel couplings in multichannel quantum defect theory (MQDT). Their theory was further developed by others to deal with systems involving a larger number of channels. In different directions, MQDT was reformulated into forms with a one-to-one correspondence to those in Fano's configuration mixing theory of resonance for photofragmentation processes involving one closed and many open channels. In this study, the theory was further developed to fully reveal the coupling nature, decoupling of the background and resonance scattering in physical scattering matrices as well as to further extract the dynamic parameters undiscovered by Fano and his colleagues. This theory was applied to the photoabsorption spectrum of $H_2$ observed by Herzberg's group.

Ferroelectric-Paraelectric Phase Transition of CsH2PO4 studied by Static NMR and MAS NMR

  • Lim, Ae Ran;Lee, Kwang-Sei
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.1
    • /
    • pp.29-35
    • /
    • 2015
  • The microscopic dynamics of $CsH_2PO_4$, with two distinct hydrogen bond lengths, are studied by static nuclear magnetic resonance (NMR) and magic angle spinning (MAS) NMR. The proton dynamics of the two crystallographically inequivalent hydrogen sites were discussed in terms of the $^1H$ NMR and $^1H$ MAS NMR spectra. Although the hydrogen bonds have two inequivalent sites, H(1) and H(2), distinct proton dynamics for the two sites were not found. Further, the $^{133}Cs$ spectrum is more or less continuous near $T_{C1}$ (=153 K). Finally, the phase transition mechanism of $T_{C1}$ in $CsH_2PO_4$ is related to the ordering of protons.

Use of Nuclear Magnetic Resonance Spectroscopy in Analysis of Fennel Essential Oil

  • AbouZid, Sameh
    • Natural Product Sciences
    • /
    • v.22 no.1
    • /
    • pp.30-34
    • /
    • 2016
  • A simple and rapid method based on proton nuclear magnetic resonance spectroscopy was developed for determination of trans-anethole content in fennel essential oil. Spectra of pure trans-anethole, of the pure essential oil of fennel, and of the pure oil of fennel with thymol internal standard were recorded. The signal of $H-1^/$ was used for quantification of trans-anethole. This proton signal is well separated in the proton magnetic resonance spectrum of the compound. No reference compound is needed and cheap internal standard was used. The results obtained from spectroscopic analysis were compared with those obtained by gas chromatography. Additionally, the developed method was used for determination of the type of vegetable oil used as a carrier in commercial products, which cannot be quantified as such by gas chromatography. This study demonstrates the application of proton nuclear magnetic resonance spectroscopy as a quality control method for estimation of essential oil components.

133Cs Nuclear Magnetic Resonance Relaxation Study of the Phase Transition of Cs2MnCl4·2H2O Single Crystals

  • Heo, Cheol;Lim, Ae-Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.14 no.2
    • /
    • pp.76-87
    • /
    • 2010
  • The structural phase transition of $Cs_2MnCl_4{\cdot}2H_2O$ single crystals was investigated by determining the $^{133}Cs$ spin-lattice relaxation time $T_1$. The number of resonance lines in the $^{133}Cs$ spectrum changes from seven to one near 375 K, which means that above 375 K the Cs sites are symmetric. Further, the $T_1$ of the $^{133}Cs$ nucleus undergoes a significant change near 375 K, which coincides with the change in the splitting of the $^{133}Cs$ resonance lines. The change in $T_1$ near $T_C$ is related to the loss of $H_2O$, and means that the forms of the octahedra of water molecules surrounding $Cs^+$ are disrupted.

ESR detection of optically-induced hyperpolarization of nitrogen vacancy centers in diamond

  • An, Min-Gi;Shim, Jeong Hyun;Kim, Kiwoong;Oh, Sangwon;Jeong, Keunhong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.1
    • /
    • pp.9-15
    • /
    • 2020
  • Nitrogen vacancy center (NV center) in diamond has recently been appeared as a promising candidate for hyperpolarization applications due to its optical pumping property by laser. Optically Detected Magnetic Resonance (ODMR) has been used as a conventional method to obtain the resonance spectrum of NV centers. ODMR, however, has a shortcoming of sensitivity and a limitation of subjects, such that the degree of hyperpolarization can hardly be estimated, and that the spins other than NV centers are invisible. In contrast, Electron Spin Resonance (ESR) spectroscopy is known to proportionally reflect the degree of spin polarization. In this work, we successfully observed the optically-induced hyperpolarization of NV spins in diamond through CW-ESR spectroscopy with an X-band system. All the NV peaks were identified by calculating the eigenvalues of NV spin Hamiltonian. The intensities of NV peaks were enhanced over 240 times after optical pumping. The enhanced peaks corresponding to the transition from |ms=0> to |ms=-1> revealed inverted phases, while other peaks remained in-phase. The optically-induced hyperpolarization on NV spins can be a useful polarization source, leading to 13C nuclear hyperpolarization in diamond.

Bouble Resonance Optical Pumping in the Transition 5S1/2-5P3/2-4D3/2, 5/2 of Rb Atoms (루비듐 5S1/2-5P3/2-4D3/2, 5/2 전이선에서의 이중공명 광펌핑 분광)

  • Moon, H.S.;Lee, L.;Kim, J.B.
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.297-303
    • /
    • 2005
  • We present the double resonance optical pumping(DROP) spectra according to the laser power, the polarization combination of lasers, and the alignment of lasers in the transition $5P_{3/2}-4D_{5/2}\;and\;5P_{3/2}-4D_{5/2}$ of $^{87}Rb.$ We observed obviously changing DROP spectrum according to the laser power in the transition $5P_{3/2}-4D_{5/2}$ involved the cycling transition. The laser power effects are attributed to the low optical-pumping-effect in the cycling transition. We observed changing DROP spectrum depending on the polarizations of the lasers. The laser polarization effects are attributed to the changing transition probability according to the polarizations of lasers. We compared the co-propagation with the counter-propagation and the spectral linewidths were 12.2 MHz and 6.9 MHz, respectively.

A feasibility study on photo-production of 99mTc with the nuclear resonance fluorescence

  • Ju, Kwangho;Lee, Jiyoung;ur Rehman, Haseeb;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.176-189
    • /
    • 2019
  • This paper presents a feasibility study for producing the medical isotope $^{99m}Tc$ using the hazardous and currently wasted radioisotope $^{99}Tc$. This can be achieved with the nuclear resonance fluorescence (NRF) phenomenon, which has recently been made applicable due to high-intensity laser Compton scattering (LCS) photons. In this work, 21 NRF energy states of $^{99}Tc$ have been identified as potential contributors to the photo-production of $^{99m}Tc$ and their NRF cross-sections are evaluated by using the single particle estimate model and the ENSDF data library. The evaluated cross sections are scaled using known measurement data for improved accuracy. The maximum LCS photon energy is adjusted in a way to cover all the significant excited states that may contribute to $^{99m}Tc$ generation. An energy recovery LINAC system is considered as the LCS photon source and the LCS gamma spectrum is optimized by adjusting the electron energy to maximize $^{99m}Tc$ photo-production. The NRF reaction rate for $^{99m}Tc$ is first optimized without considering the photon attenuations such as photo-atomic interactions and self-shielding due to the NRF resonance itself. The change in energy spectrum and intensity due to the photo-atomic reactions has been quantified using the MCNP6 code and then the NRF self-shielding effect was considered to obtain the spectrums that include all the attenuation factors. Simulations show that when a $^{99}Tc$ target is irradiated at an intensity of the order $10^{17}{\gamma}/s$ for 30 h, 2.01 Ci of $^{99m}Tc$ can be produced.

Spectroscopic Imaging at 1.0Tesla MR Unit (1.0Tesla 자기공명 영상장치에서의 분광영상기법에 관한 연구)

  • Yi, Y.;Ryu, T.H.;Oh, C.H.;Ahn, C.B.;Lee, H.K.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.517-527
    • /
    • 1997
  • Magnetic Resonance Spectroscopic Imaging is a methodology combining the imaging and spectroscopy. It can provide the spectrum of each areas of image so that one can easily compare the spectrum of one position to another position of the image. In this study, we developed pulse sequence or the spectroscopic imaging method, RF wave forms or the saturation of water signal, computer simulations to validate our method, and confirmed the methodology with phantom experiment. Then we applied the spectroscopic method to human subject and identified a few important metabolites in in vivo. To develope a water saturating RF waveform, we used Shinnar-Le-Roux algorithm and obtained maximum phase RF waveform. With this RF pulse, it could suppress the water signal to 1:1000. The magnet is shimmed to under 1.0ppm with auto-shimming technique. The saturation bandwidth is 80Hz(2ppm). The water and fat seperation is 3.3ppm(about 140Hz at 1 Tesla magnet), the bandwidth is enough to resolve the difference. But we are more concerned about the narrow window in between the two peaks, in which the small quantity of metabolites reside. We performed the computer simulation and phantom experiments in 8*8 matrix form and showed good agreement in the image and spectrum. Finally we applied spectroscopic imaging to the brain of human subject. Only the lipid signal was shown in the periphery region which agrees with the at distribution in human head surface area. The spectrum inside the brain shows the important metabolites such as NAA, Cr/PCr, Choline. We here have shown the spectroscopic imaging which is normally done above 1.5 Tesla machine can be performed in the 1 Tesla Magnetic Resonance Imaging Unit.

  • PDF

Quantitative Comparison of 1H-MRS Spectra Depending on the Paramagnetic Gadolinium Contrast Agent(GBCA) Injection (가돌리늄 조영제 주입에 따른 1H-MRS spectrum의 정량적 비교)

  • Choi, Kwan-Woo;Son, Soon-Yong;Yoo, Beong-Gyu
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.589-595
    • /
    • 2017
  • This study evaluated the effect of gadolinium contrast agents on the spectrum of metabolites during $^1H-MRS$ of brain and to investigate whether the contrast agents injected before MR spectroscopy significantly affect the estimated peaks of MRS. From January to May 2017, brain MR spectroscopy was performed on 30 patients to compare the spectrum before and after contrast injection of the brain white matter tissue. As a result, the spectrum of metabolites decreased after the paramagnetic contrast agents injected. However, it was not statistically significant which indicated that the use of contrast agent did not meaningfully affect the spectrum of metabolites. In conclusion, the use of the paramagnetic contrast before the acquisition of the spectroscopy may aid voxel positioning especially when it is difficult to determine the exact location of the lesion or the contrast is low.

POINTWISE CROSS-SECTION-BASED ON-THE-FLY RESONANCE INTERFERENCE TREATMENT WITH INTERMEDIATE RESONANCE APPROXIMATION

  • BACHA, MEER;JOO, HAN GYU
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.791-803
    • /
    • 2015
  • The effective cross sections (XSs) in the direct whole core calculation code nTRACER are evaluated by the equivalence theory-based resonance-integral-table method using the WIMS-based library as an alternative to the subgroup method. The background XSs, as well as the Dancoff correction factors, were evaluated by the enhanced neutron-current method. A method, with pointwise microscopic XSs on a union-lethargy grid, was used for the generation of resonance-interference factors (RIFs) for mixed resonant absorbers. This method was modified by the intermediate-resonance approximation by replacing the potential XSs for the non-absorbing moderator nuclides with the background XSs and neglecting the resonance-elastic scattering. The resonance-escape probability was implemented to incorporate the energy self-shielding effect in the spectrum. The XSs were improved using the proposed method as compared to the narrow resonance infinite massbased method. The RIFs were improved by 1% in $^{235}U$, 7% in $^{239}Pu$, and >2% in $^{240}Pu$. To account for thermal feedback, a new feature was incorporated with the interpolation of pre-generated RIFs at the multigroup level and the results compared with the conventional resonance-interference model. This method provided adequate results in terms of XSs and k-eff. The results were verified first by the comparison of RIFs with the exact RIFs, and then comparing the XSs with the McCARD calculations for the homogeneous configurations, with burned fuel containing a mixture of resonant nuclides at different burnups and temperatures. The RIFs and XSs for the mixture showed good agreement, which verified the accuracy of the RIF evaluation using the proposed method. The method was then verified by comparing the XSs for the virtual environment for reactor applicationbenchmark pin-cell problem, as well as the heterogeneous pin cell containing burned fuel with McCARD. The method works well for homogeneous, as well as heterogeneous configurations.