• Title/Summary/Keyword: Resonance Problems

Search Result 328, Processing Time 0.031 seconds

SOLVABILITY OF MULTI-POINT BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS AT RESONANCE

  • Liu, Yuji;Liu, Xingyuan
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.425-443
    • /
    • 2012
  • Sufficient conditions for the existence of at least one solution of a class of multi-point boundary value problems of the fractional differential equations at resonance are established. The main theorem generalizes and improves those ones in [Liu, B., Solvability of multi-point boundary value problems at resonance(II), Appl. Math. Comput., 136(2003)353-377], see Remark 2.3. An example is presented to illustrate the main results.

Scattering cross section for various potential systems

  • Odsuren, Myagmarjav;Kato, Kiyoshi;Khuukhenkhuu, Gonchigdorj;Davaa, Suren
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.1006-1009
    • /
    • 2017
  • We discuss the problems of scattering in this framework, and show that the applied method is very useful in the investigation of the effect of the resonance in the observed scattering cross sections. In this study, not only the scattering cross sections but also the decomposition of the scattering cross sections was computed for the ${\alpha}-{\alpha}$ system. To obtain the decomposition of scattering cross sections into resonance and residual continuum terms, the complex scaled orthogonality condition model and the extended completeness relation are used. Applying the present method to the ${\alpha}-{\alpha}$ and ${\alpha}-n$ systems, we obtained good reproduction of the observed phase shifts and cross sections. The decomposition into resonance and continuum terms makes clear that resonance contributions are dominant but continuum terms and their interference are not negligible. To understand the behavior of observed phase shifts and the shape of the cross sections, both resonance and continuum terms are calculated.

Thermal post-buckling and primary resonance of porous functionally graded beams: Effect of elastic foundations and geometric imperfection

  • Jia-Qin Xu;Gui-Lin She
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.543-551
    • /
    • 2023
  • In this article, thermal post-buckling and primary resonance of the porous functionally graded material (FGM) beams in thermal environment considering the geometric imperfection are studied, the material properties of FGM beams are assumed to vary along the thickness of the beam, meanwhile, the porosity volume fraction, geometric imperfection, temperature, and the elastic foundation are considered, using the Euler-Lagrange equation, the nonlinear vibration equations are derived, after the dimensionless processing, the dimensionless equations of motion can be obtained. Then, the two-step perturbation method is applied to solve the vibration problems, the resonance and thermal post-buckling response relations are obtained. Finally, the functionally graded index, the porosity volume fraction, temperature, geometric imperfection, and the elastic foundation on the resonance behaviors of the FGM beams are presented. It can be found that these parameters can influence the thermal post-buckling and primary resonance problems.

A New Method for Extracting Resonance Information in Acoustic Wave Resonance Scattering (음향파 공명 산란의 새로운 해석방법)

  • 이희남;박영진
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.409-417
    • /
    • 1999
  • A new method is proposed for the isolation of resonances from scattered waves for the isolaton of resonances from scattered waves for acoustic wave resonance scattering problems. The resonance scattering function consisting purely of resonance information is defined. Acoustic wave scattering from a variety of submerged bodies is numerically analyzed. The classical resonance scattering theory (RST) and the new method compute identical magnitudes of the resonances from each partial wave, however, the phases are significantly different. The exact $\pi$-radians phase shifts through the resonance and anti-resonance frequencies show that the proposed method properly extracts the vibrational resonance information of the scatterer. Due to the differences in phases of the resonances from each partial wave, the new method and RST generate different total resonance spectra.

  • PDF

Elastic Wave Resonance Scattering from a Fluid-filled Cylindrical Cavity (유체가 채워진 실린더형 공동에 의한 탄성파 공명 산란 해석)

  • Huinam Rhee;Park, Youngjin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.208-213
    • /
    • 2002
  • A new method is presented for the isolation of resonances from scattered waves for elastic wave resonance scattering problems. The resonance scattering function consisting purely of resonance information is defined. Elastic wave resonance scattering from a water-filled cylindrical cavity imbedded in an aluminum matrix is numerically analyzed. The classical resonance scattering theory and the new method compute different magnitudes and phases of the resonances from each partial wave, and therefore. their total resonance spectra are quite different. The exact $\pi$ - radians phase shifts through the resonance and anti-resonance frequencies show that the proposed method properly extracts the vibrational resonance information of the scatterer compared to resonance scattering theory.

  • PDF

A new method for extracting resonance information in acoustic wave resonance scattering (음향파 공명 산란의 새로운 해석방법)

  • 이희남;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.504-509
    • /
    • 1998
  • A new method is proposed for the isolation of resonances from scattered waves for acoustic wave resonance scattering problems. The resonance scattering function consisting purely of resonance information is defined. Acoustic wave scattering from a variety of submerged bodies is numerically analyzed. The classical resonance scattering theory (RST) and the new method compute identical magnitude of the resonance from each scattered partial wave, however, the phases are significantly different. The exact .pi.-radians phase shifts through the resonance and anti-resonance show that the proposed method properly extracts the vibrational resonance information of the scatterer. Due to the difference in the phase of each, partial wave, the new method and RST generate different total resonance spectra.

  • PDF

Width Operator for Resonance Width Determination

  • 박태준
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.198-200
    • /
    • 1996
  • The resonance width may be directly determined by solving an eigenvalue equation for width operator which is derived in this work based on the method of complex scaling transformation. The width operator approach is advantageous to the conventional rotating coordinate method in twofold; 1) calculation can be done in real arithmetics and, 2) so-called θ-trajectory is not required for determining the resonance widths. Application to one- and two-dimensional model problems can be easily implemented.

An Investigation of Control Parameters of Active Filters Based on Voltage Detection

  • SATO Yukihiko;KAWASE Takeshi;MACHIDA Hiraku
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.475-479
    • /
    • 2001
  • Compensation characteristics or active filters based on voltage detection are investigated. These active filters act equivalently as a passive circuit so that they may not cause practical problems such as stimulation of resonance in the distribution lines. Thus, these active filters can be used as the general-purpose active filters. On the other hand, these active filters may have a possibility of the anti-resonance associated with the line inductance of the distribution lines. In this paper, the relationship between the anti-resonance and the control parameters of the proposed active filters is clarified. Some methods to avoid the problems due to the anti-resonance are investigated. Experimental results are included to confirm the validity of the investigation presented in this paper.

  • PDF

Solution of the Inverse Electromagnetic Scattering Problem for Cylindrical Objects by Using the Resonance Scattering Ttheory (공진산란이론을 이용한 원통형 산란체에 대한 전자기파문제의 역산란 이론)

  • Jung, Yong-Hwa;Jeon, Sang-Bong;Ahn, Chang-Hoi
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.3
    • /
    • pp.142-148
    • /
    • 2006
  • The resonances that contain the information on the properties of the scattering target can be used for target reconstruction approaches. The inverse scattering theory for the resonances has been applied to the problems of the scattering for a spherical, cylindrical dielectric objects and dielectrically coated conductors, shown reasonable results. Though by using this method the thickness and the dielectric constants of the target can be obtained from a determination of the spacing and of the widths of the scattering resonances, the radius of the target should be given. In this paper, we suggest the improved inverse theory combined with the resonance scattering theory to obtain the radius in addition to the dielectric constant of the target. The applications of this method for scattering problems of electromagnetic waves from cylindrical targets were accomplished, and it shows its validity.