• Title/Summary/Keyword: Resonance Mode

Search Result 807, Processing Time 0.028 seconds

Measurement of Dynamic Elastic Modulus of Foil Material by ESPI and Sonic Resonance Testing (ESPI와 음향공진법을 이용한 Foil 재료의 동적탄성계수 측정)

  • Lee H.S.;Kim K.S.;Kang K.S.;Ahmad Akhlaq
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.914-917
    • /
    • 2005
  • The paper proposes a new sonic resonance test for a dynamic elastic constant measurement which is based on time-average electronic speckle pattern interferometry(TA-ESPI)and Euler-Bernoulli equation. Previous measurement technique of dynamic elastic constant has the limitation of application for thin film or polymer material because contact to specimen affects the result. TA-ESPI has been developed as a non-contact optical measurement technique which can visualize resonance vibration mode shapes with whole-field. The maximum vibration amplitude at each vibration mode shape is a clue to find the resonance frequencies. The dynamic elastic constant of test material can be easily estimated from Euler-Bernoulli equation using the measured resonance frequencies. The TA-ESPI dynamic elastic constant measurement technique is able to give high accurate elastic modulus of materials through a simple experiment and analysis.

  • PDF

Estimation of Dynamic Stress Concentration Factor by Infrared Thermography Stress Analysis (적외선 열화상 응력측정법에 의한 동적 응력집중계수 예측)

  • Choi, Man-Yong;Kang, Ki-Soo;Park, Jeong-Hak;Ahn, Byung-Wook;Kim, Koung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.77-81
    • /
    • 2008
  • Structural components subjected to high frequency vibrations, such as those used in vibrating parts of gas turbine engines, are usually required to avoid resonance frequencies. Generally, the operating frequency is designed at more than resonance frequencies. When a vibrating structure starts or stops, the structure has to pass through a resonance frequency, which results in large stress concentration. This paper presents the transient thermoelastic stress analysis of vibrating cantilever beam using infrared thermography and finite element method (FEM). In FEM, stress concentration factor at the 2nd resonance vibration mode is calculated by the mode superposition method of ANSYS. In experiment, stress distributions are investigated with infrared thermography and dynamic stress concentration factor is estimated. Experimental result is agreed with FEM result within 10.6%. The advantage of this technique is a better immunity to contact problem and geometric limitation in stress analysis of small or micro structures.

Mode Identification of Resonant Frequencies for a Dielectric Loaded Circular Cylindrical Cavity (유전체가 삽입된 원통형 공진기에서 공진주파수의 모드 구분)

  • Kim, Jin-Kook;Kim, Dong-Kyu;Choi, Hong-Ju;Hur, Jung;Lee, Sang-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.3
    • /
    • pp.351-358
    • /
    • 1999
  • This paper describes the mode identification of resonant frequencies in dielectric loaded circular cylindrical cavity. To identify the mode of resonant frequencies, the calculated resonant frequencies were compared with the simulated ones in the air-filled circular cylindrical cavity by Microstripes EM simulator. With z-oriented magnetic field excitation, we could get only TE mode resonance, while all the modes including TM mode were observed with $\phi$-oriented magnetic field excitation. We could identify the modes with the two excitation methods. We applied the identification method to a dielectric loaded circular cylindrical cavity and compared these results with experimental ones. To certify the method, we traced resonance frequencies with varying the dielectric height. We observed that the resonance of $TE_{011}$ mode was changed dramatically while the variation of the $TE_{111}$ and $TE_{211}$ modes are relatively small.

  • PDF

An Experimental Study on Shape Oscillation Mode of a Pendant Droplet by an Acoustic Wave (음향 가진을 이용한 매달려 있는 액적의 형상 진동 모드에 관한 실험적 연구)

  • Kang Byung-Ha;Moon Jong-Hoon;Kim Ho-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.523-530
    • /
    • 2006
  • One of the fascinating prospects is the possibility of new hydrodynamics technology on micro-scale system since oscillations of micro-droplets are of practical and scientific importance. It has been widely conceived that the lowest oscillation mode of a pendant droplet is the longitudinal vibration, i.e. periodic elongation and contraction along the longitudinal direction. Nonlinear and forced oscillations of supported viscous droplet were focused in the present study. The droplet has a free contact line with solid plate and inviscid fluid. Natural frequencies of a pendant droplet have been investigated experimentally by imposing the acoustic wave while the frequency is being increased at a fixed amplitude. It is found that a pendant droplet shows the resonant behaviors at each mode similar to the theoretical analysis. The rotation of the droplet about the longitudinal axis is the oscillation mode of the lowest resonance frequency. This rotational mode can be invoked by periodic acoustic forcing and is analogous to the pendulum rotation. It is also found that the natural frequency of a pendant droplet is independent of the drop density and surface tension but inversely proportional to the square root of the droplet size.

Sensing Characteristics of Uncoated Double Cladding Long-period Fiber Grating Based on Mode Transition and Dual-peak Resonance

  • Zhou, Yuan;Gu, Zheng Tian;Ling, Qiang
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.243-249
    • /
    • 2021
  • In this paper, the sensing characteristics of a double cladding fiber (DCF) long-period fiber grating (LPFG) to the surrounding refractive index (SRI) are studied. The outer cladding of the DCF plays the role of the overlay, thus, the mode transition (MT) phenomenon of DCF can be induced by etching the outer cladding radius instead of coating overlays. The response characteristics of the effective refractive index (ERI) of the cladding mode to the outer cladding radius are analyzed. It is found that in the MT range, the change rate of ERIs of cladding modes is relatively larger than that for other ranges. Further, based on the features of the mode transition region (MTR), the phase-matching curve of the 11th cladding mode is investigated, and the response of the DCF-LPFG to the SRI is characterized by the change of wavelength intervals between the dual peaks under different outer cladding radii. The numerical simulation results show that the SRI sensitivity is greatly improved, which is available to 3484.0 nm/RIU with the fitting degree 0.998 in the SRI range of 1.33-1.37. The proposed DCF-LPFG can provide new theoretical support for designing the DCF-LPFG refractive index sensor with excellent performances of sensitivity, linearity and structure.

Acoustic resonance by length of acoustic baffle at Finned Tube bank (핀-튜브군에서 배플 길이에 따른 음향공진)

  • 방경보;류제욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.98-103
    • /
    • 2003
  • This paper presents phenomena of vibration and noise due to acoustic resonance in tube bank of a HRSG. Acoustic resonance is may arise when the vortex shedding frequency coincides with the acoustic natural frequency. At this tube bank, dominant frequencies of vibration in this system were 43.5, 67.5㎐. The 3$\^$rd/ acoustic natural frequency calculated was 68.5㎐. When the difference of vortex shedding frequency and acoustic natural frequency is within ${\pm}$20%, acoustic resonance could occur. In this system, in order to prevent acoustic resonance, acoustic baffle was installed in the tube bank before operating. But acoustic resonance occurred. So, we evaluate the effect of acoustic mode due to baffle extension length. After investigating, we did revise acoustic baffle to eliminate acoustic resonance effectively.

  • PDF

Shape Oscillation and Mode Characteristic of Droplet on Vibrating Flat Surface (진동 평판 위 액적의 형상 진동 변화 및 모드 특성)

  • Shin, Young-Sub;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.489-494
    • /
    • 2013
  • This study aims to understand the mode characteristics of a droplet under a periodic forced vibration. To predict the resonance frequency of a droplet, theoretical and experimental approaches were employed. A high-speed camera was used to capture the various deformation characteristics of a droplet-mode shape, detachment, separated secondary droplet, and skewed deformation. The comparison between the theoretical and the experimental approaches shows a ~10% discrepancy in the prediction of the resonance frequency, which appears to be caused by the effect of contact line friction, nonlinear wall adhesion, and experimental uncertainty. Owing to contact-line pinning and smaller amplitude, the droplet shape becomes symmetric and the size of each lobe at the resonance frequency exceeds that at the neighbor, which is out of resonance.

Localized Surface Plasmon Resonance Coupling in Self-Assembled Ag Nanoparticles by Using 3-Dimensional FDTD Simulation (3차원 FDTD Simulation을 이용한 자기조립된 Ag 나노입자의 국소표면플라즈몬공명 상호작용 현상 연구)

  • Lee, Kyung-Min;Yoon, Soon-Gil;Jeong, Jong-Ryul
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.417-422
    • /
    • 2014
  • In this study, we investigated localized surface plasmon resonance and the related coupling phenomena with respect to various geometric parameters of Ag nanoparticles, including the size and inter-particle distance. The plasmon resonances of Ag nanoparticles were studied using three-dimensional finite difference time domain(FDTD) calculations. From the FDTD calculations, we discovered the existence of a symmetric and an anti-symmetric plasmon coupling modes in the coupled Ag nanoparticles. The dependence of the resonance wavelength with respect to the inter-particle distance was also investigated, revealing that the anti-symmetric mode is more closely correlated with the inter-particle distance of the Ag nanoparticles than the symmetric mode. We also found that higher order resonance modes are appeared in the extinction spectrum for closely spaced Ag nanoparticles. Plasmon resonance calculations for the Ag particles coated with a $SiO_2$ layer showed enhanced plasmon coupling due to the strengthened plasmon resonance, suggesting that the inter-particle distance of the Ag nanoparticles can be estimated by measuring the transmission and absorption spectra with the plasmon resonance of symmetric and anti-symmetric localized surface plasmons.

A Study on the Noise and Vibration Analysis of 200kW PMSM for Electric Propulsion Ship

  • Cho, Yang-Uk;Kang, Gyu-Hong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.389-393
    • /
    • 2014
  • This paper presents one of the methods for design to reduce the noise and vibration of 200kW motor for electric propulsion ship. One of the important factors affecting vibration of the motor is the resonance. The natural frequency and natural mode of the 200kW motor is analyzed by using FEM tool and impact test equipment to avoid the resonance. Also, compare FEM result with impact test result to make a reliable FE model of 200kW motor. In order to find out the effect of the noise and vibration of the motor by electromagnetic excitation force, conduct electromagnetic-structure coupled analysis. These characteristics are much useful to design 200kW motor for electric propulsion ship.

Experiments on the Influence of the Air Cavity Resonance on the Structural Vibration Modes in Radial Tire (승용차용 레이디얼 타이어에서 공기공동진동형이 구조진동형에 미치는 영향에 관한 실험)

  • Kim, Yong-Woo;Jeong, Kyoung-Shin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.44-49
    • /
    • 2007
  • It is well known that the acoustic cavity inside the tire-wheel assembly contributes to vehicle interior noise. In this paper, we have performed acoustic and structural modal testings to investigate the influences of the acoustic cavity resonance on structural vibration characteristics for the tire in free-suspension and for the loaded tire. The testings have given us some findings, which are reported in this paper.