• 제목/요약/키워드: Resonance Frequency Analysis

검색결과 984건 처리시간 0.024초

골수술용 압전형 초음파 의료기기 개발을 위한 유한요소해석 및 이의 실험적 검증 (Finite Element Analysis for the Development of Bone Surgery Piezoelectric Ultrasonic Medical Device and its Experimental Verification)

  • 송태하;이중호;최종균;이희원
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권5호
    • /
    • pp.319-330
    • /
    • 2022
  • In this study, the optimal driving frequency was derived through finite element analysis (FEA) to optimize the developed piezoelectric ultrasonic medical devices(PUMD) for bone surgery. The core of the PUMD is the piezoelectric ceramic (PZT), which is a vibrator that generates vibration energy. The piezoelectric ceramic shows the maximum current value with respect to the input voltage at the resonance frequency, which generates the maximum mechanical vibration. In the past, various studies have been conducted related to the analysis of PUMD, but most of the research so far has been limited to free vibration analysis. However, in order to derive the accurate resonant frequency, the initial stress generated by bolt tightening in the bolt-clamped Langevin type transducer (BLT) must be considered. In this study, after designing a PUMD, the driving performance according to the bolt tightening value was analyzed through FEA, and this was experimentally verified. First, the resonance mode and frequency response were confirmed through modal and harmonic analysis at 20-40 kHz, which is known as the optimal driving frequency band of PUMD for bone surgery. In addition, the design of the PUMD was confirmed by checking the mechanical behavior of the tip and the piezoelectric ceramic at the resonant frequency. Consequentially, the characteristic evaluation was performed, and it was confirmed that the resonant frequency result derived through the FEA was reasonable. Through this study, we presented a more rational FEA method than before for BLT transducers. We expect that this will shorten the time and cost of developing a PUMD, and will enable the development of more stable and high-quality products.

직류 계전기의 접촉구조에 의한 고주파수 소음저감 (Towards reducing acoustical high-frequency noise of a direct current relay via contact structure)

  • 양준혁;원종섭;김원진
    • 한국음향학회지
    • /
    • 제41권6호
    • /
    • pp.691-697
    • /
    • 2022
  • 직류 계전기는 전기자동차의 하나의 부품으로 간헐적으로 고주파수 소음이 710 Hz ~ 730 Hz의 주파수 범위에서 전기적 부하에 의해 발생한다. 고정접점과 가동접점 사이에서 발생하는 전자 반발력이 가동접점과 접압 스프링을 진동시키고, 그 진동으로 가동접점과 접압 스프링에 공진이 발생하여 고주파수 소음이 발생한다. 본 논문에서는 수치해석 및 실험을 통하여 고주파수 소음의 원인을 규명하고, 소음을 제거하는 방안을 제시하였다. 710 Hz ~ 730 Hz의 주파수 범위에서 가동접점은 고정접점과의 2개의 접촉점을 기준으로 회전하는 공진모드가 발생한다. 따라서 해당 여기서 제안한 방법은 공진모드를 제거하기 위해 가동접점의 구조를 2점 접촉구조 방식에서 3점 접촉구조 방식으로 변경하는 것이다. 3점 접촉구조를 적용함에 따라 공진모드가 제거되는 것을 수치해석으로 확인하였고, 실험적으로도 고주파수 소음이 발생하지 않는 것을 확인하였다.

PSN-PMN-PZT 조성의 CeO2첨가에 따른 압전.유전특성 변화 (Piezoelectric and Dielectric Properties on PSN-PMN-PZT Composition according to CeO2 Addition)

  • 윤만순;최용길;어순철
    • 한국전기전자재료학회논문지
    • /
    • 제19권9호
    • /
    • pp.838-842
    • /
    • 2006
  • 0.03Pb$(Sb_{0.5}Nb_{0.5})O_{3}-0.03Pb(Mn{1/3}Nb{2/3)O_{3}-(0.94-x)PbTiO_{3}-xPbZrO_{3}$ ceramics doped with $CeO_{2}$ were synthesized by conventional bulk ceramic processing technique. Phases analysis, microstructures and piezoelectric properties were investigated as a function of $CeO_{2}$ content (0.03, 0.05, 0.1 0.3, 0.5 and 0.7 wt%). Microstructures and phases information were characterized using a scanning electron microscope (SEM) and an X-ray diffractometer (XRD). Mechanical quality factor ($Q_{m}$) and coupling factor(kp) were obtained from the resonance measurement method. Both $Q_{m}$ and $k_{p}$ were shown to reach to the maximum at 0.1 wt% $CeO_{2}$. In order to evaluate the stability of resonance frequency and effective electromechanical coupling factor ($K_{eff}$) as a function of $CeO_{2}$, the variation of resonance and anti-resonance frequency were also measured using a high voltage frequency response analyzer under various alternating electric fields from 10 V/mm to 80 V/mm. It was shown that the stability of resonance frequency and effective electromechanical coupling factor were increased with increasing the $CeO_{2}$ contents.

밀리미터 전자기파를 이용한 콘크리트 내부 자가치유 캡슐의 위치 측정을 위한 3D 프린팅 자가치유 캡슐의 공진 주파수 분석 (Resonance frequency analysis of 3D printed self-healing capsules for localization of self-healing capsules inside concrete using millimeter wave length electromagnetic waves)

  • 임태욱;성호;이영준;호걸;김상유;정원석
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.243-244
    • /
    • 2022
  • In this paper, experiments were conducted on signal amplification of polymer capsules for application to Ground Penetrating Radar so as to enable real-time monitoring of polymer capsules inside concrete using the Morphology Dependent Resonance phenomenon. A TEM CELL and a vector network analyzer were used to analyze the difference in resonance frequency depending on the material of the sphere and the presence or absence of fracture. In order to manufacture a capsule of a size that can be measured using millimeter waves used in GPR, we manufactured a capsule with a 3D printer and analyzed the effects of the presence or absence of coating and the size of the capsule on the resonance frequency. Resonant frequency or signal amplification is more affected by diameter than coating. The capsule showing the highest amplification is the resin-coated 50 mm diameter capsule with a 316-fold increase and the lowest capsule is the uncoated 10 mm diameter capsule with a signal amplification of 11.9 times. These results demonstrate the potential of GPR to measure the position and state of self-healing capsules, which are small-sized polymers, in real time using millimeter waves.

  • PDF

Effects of oscillation parameters on aerodynamic behavior of a rectangular 5:1 cylinder near resonance frequency

  • Pengcheng Zou;Shuyang Cao;Jinxin Cao
    • Wind and Structures
    • /
    • 제38권1호
    • /
    • pp.59-74
    • /
    • 2024
  • Large Eddy Simulation (LES) is used to explore the influence of vibration frequency and amplitude on the aerodynamic performance of a rectangular cylinder with an aspect ratio of B/D=5 (B: breadth; D: depth of cylinder) at a Reynolds number of 22,000 near resonance frequency. In smooth flow conditions, the research employs a sequence of three-dimensional simulations under forced vibration with diverse frequency ratios fe / fo = 0.8-1.2 (fe : oscillation frequency; fo : Strouhal frequency when the rectangular cylinder is stationary ) and oscillation amplitudes Ah/D = 0.05 - 0.3. The individual influences of fe / fo and Ah/D on the characteristics of integrated and distributed aerodynamic forces are the focal points of discussion. For the integrated aerodynamic force, particular emphasis is placed on the analysis of the dependence of velocity-proportional component C1 and displacement-proportional component C2 of unsteady aerodynamic force on amplitude and frequency ratio. Near the resonance frequency, the dependencies of C1 and C2 on amplitude are stronger than that of frequency ratio. For the distributed aerodynamic force, the increase in frequency and amplitude promotes the position of the main vortex core and reattachment to the leading edge in the streamwise direction. In the spanwise direction, vibration enhances the spanwise correlation of aerodynamic force to weaken the three-dimensional effect of the flow field, and a lower frequency ratio and larger amplitude amplify this effect.

이동질량을 고려한 단순지지된 교량의 진동수 및 공진현상 분석 (The Effect of Moving Mass on Resonance Phenomenon and Natural Frequency of a Simply Supported Beam)

  • 민동주;정명락;박성민;김문영
    • 한국소음진동공학회논문집
    • /
    • 제26권1호
    • /
    • pp.27-38
    • /
    • 2016
  • The purpose of this study is to investigate the influence of moving mass on the vibration characteristics and the dynamic response of the simply supported beam. The three types of the moving mass(moving load, unsprung mass, and sprung mass) are applied to the vehicle-bridge interaction analysis. The numerical analyses are then conducted to evaluate the effect of the mass, spring and damper properties of the moving mass on natural frequencies and dynamic responses of the simply supported beam. Particularly, in the case of the sprung mass, variations of the natural frequency of simply supported beam are explored depending on the position of the moving mass and the frequency ratio of the moving mass and the beam. Finally the parametric studies on the resonance phenomena are performed with changing mass, spring and damper parameters through the dynamic interaction analyses.

Electric power frequency and nuclear safety - Subsynchronous resonance case study

  • Volkanovski, Andrija;Prosek, Andrej
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.1017-1023
    • /
    • 2019
  • The increase of the alternate current frequency results in increased rotational speed of the electrical motors and connected pumps. The consequence for the reactor coolant pumps is increased flow in primary coolant system. Increase of the current frequency can be initiated by the subsynchronous resonance phenomenon (SSR). This paper analyses the implications of the SSR and consequential increase of the frequency on the nuclear power plant safety. The Simulink $MATLAB^{(R)}$ model of the steam turbine and governor system and RELAP5 computer code of the pressurized water reactor are used in the analysis. The SSR results in fast increase of reactor coolant pumps speed and flow in the primary coolant system. The turbine trip value is reached in short time following SSR. The increase of flow of reactor coolant pumps results in increase of heat removal from reactor core. This results in positive reactivity insertion with reactor power increase of 0.5% before reactor trip is initiated by the turbine trip. The main parameters of the plant did not exceed the values of reactor trip set points. The pressure drop over reactor core is small discarding the possibility of core barrel lift.

후면기공을 갖는 마이크로스피커와 덕트형 스피커시스템사이의 연관성 해석 (Analysis of the Relation Between Micro-Speaker with the Back Holes and the Ducted Speaker-System)

  • 이에스더;오세진
    • 한국음향학회지
    • /
    • 제26권3호
    • /
    • pp.115-122
    • /
    • 2007
  • 본 연구에서는 마이크로스피커의 구조와 특성을 유닛과 덕트형 인클로저로 구성되어 있는 일종의 덕트형 스피커시스템처럼 취급할 수 있음을 처음으로 보여주었다. 후면기공의 면적이 증가할수록 스티프니스는 감소하고 컴플라이언스는 증가하였다. 그 결과로써, 후면기공의 면적이 증가할수록 공명진동수가 컴플라이언스의 제곱근에 비례하여 증가하였다. 후면기공의 면적이 감소함에 의하여 중저음 영역에서의 기준음압레벨이 지수함수적으로 감소하였다.

홍삼의 자기공명 특성과 영상 분석 (Analysis of Magnetic Resonance Characteristics and Images of Korean Red Ginseng)

  • 김성민;임종국
    • Journal of Biosystems Engineering
    • /
    • 제28권3호
    • /
    • pp.253-260
    • /
    • 2003
  • In this study, the feasibility of magnetic resonance techniques for nondestructive internal quality evaluation of Korean red ginseng was examined. Relaxation time constants were measured using various grades of red ginsengs. Solid state magnetic resonance imaging technique was applied to image dried red ginsengs which have low moisture contents (about 13%). A 7 tesla magnetic resonance imaging system operating at a proton resonant frequency of 300 ㎒ was used for acquiring MR images of dried Korean red ginseng. The comparison test of cross cut digital images and magnetic resonance images of heaven grade, good grade with cavity inside, and good grade with white part inside red ginseng suggested the feasibility of the internal quality evaluation of Korean red ginsengs using MRI techniques. A good grade red ginseng included abnormal tissues such as cavities or white parts inside was observed by the signal intensity of MR image based on magnetic resonance properties of proton nucleus. Analysis on an one dimensional profile of acquired MR image of Korean red ginseng showed easy discrimination of normal and abnormal tissues. MR techniques suggested ways to detect internal defects of red ginsengs effectively.

자동차 시트 및 마네킹 시스템의 강제 진동 (Forced Vibration of Car Seat and mannequin System)

  • 김성걸
    • 한국정밀공학회지
    • /
    • 제17권9호
    • /
    • pp.122-132
    • /
    • 2000
  • A simplified modeling approach of forced vibration for occupied car seats was demonstrated by using a mathematical model presented in 'Free Vibration of Car seat and Mannequin System' nonlinear and linear equations of motions were rederived for forced vibration and the transfer function was used to calculate the frequency response function. The experimental apparatus were set up and hydraulic shaker was used to obtain the system responses. Through the tests mannequin's head had a lot of problems and the responses with a head and without a head were measured. To explore the effects of linear dampings and friction moments at the joints linear analyses were performed. New sets of linear spring and damping coefficients and torsional dampings at the joints were calculated through parameter study to match up with experimental results. Good agreement between experimental and simulation frequency response estimates were obtained both in terms of locations of resonances and system deflection shapes at resonance indicating that this is a feasible method of modeling seated occupants.

  • PDF