• Title/Summary/Keyword: Resonance Frequency Analysis

Search Result 984, Processing Time 0.026 seconds

The study of bone density assessment on dental implant sites (임플란트 식립 부위의 골밀도 평가에 관한 연구)

  • Park, Su-Won;Jang, Soo-Mi;Choi, Byoung-Hwan;Son, Han-Na;Park, Bong-Chan;Kim, Chang-Hwan;Son, Jang-Ho;Sung, Iel-Yong;Lee, Ji-Ho; Cho, Yeong-Cheol
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.5
    • /
    • pp.417-422
    • /
    • 2010
  • Introduction: Bone density is one of the important factors for the long term success of endosseous implants. The bone density varies from site to site and from patient to patient. A preoperative evaluation of the bone density is quite useful to oral surgeons for planning dental implantation. More accurate information on the bone density will help surgeons identify suitable implant sites, thereby increase the success rate of dental implantation. This study examined the correlation between the bone density measured preoperatively by computed tomography (CT) and the implant primary stability measured by resonance frequency analysis. Furthermore, the effects of the implant sites, gender, age and generalized systemic disorder patients on the bone density and primary implant stability were examined. Materials and Methods: One hundred and fourteen patients were selected. None of the patients had undergone a tooth extraction or bone graft history in the previous year. Preoperatively, the patients underwent CT scanning to evaluate the Hounsfield unit (HU), and resonance frequency analysis (RFA) was used to evaluate the implant primary stability at the time of implant installation. All implants were 4.0 mm diameter and 11.5 mm length US II. All patients were recorded and the HU and implant stability quotient (ISQ) value were evaluated according to the sites, gender and age. Results: The highest HU values were found in the mandibular anterior site ($827.6{\pm}151.4$), followed by the mandibular molar site ($797{\pm}135.1$), mandibular premolar site ($753.8{\pm}171.2$), maxillary anterior site ($726.3{\pm}154.4$), maxillary premolar site ($656.7{\pm}173.8$) and maxillary molar site ($621.5{\pm}164.9$). The ISQ value was the highest in the mandibular premolar site ($81.5{\pm}2.4$) followed by the mandibular molar site ($80.0{\pm}5.7$), maxillary anterior site ($77.4{\pm}4.1$), mandibular anterior site ($76.4{\pm}11.9$), maxillary premolar site ($74.2{\pm}14.3$) and maxillary molar site ($73.7{\pm}7.4$). The mean HU and ISQ value were similar in females and males. (HU: P=0.331, ISQ: P=0.595) No significant difference was also found in the age group respectively. However, the correlation coefficients between the variables showed a closed correlation between the HU and ISQ value. Conclusion: These results showed close correlation between the bone density (HU) and primary stability value (ISQ) at the time of implant installation (Correlation coefficients=0.497, P<0.01). These results strengthen the hypothesis that it might be possible to predict and quantify the initial implant stability and bone density from a presurgical CT diagnosis.

Numerical Analysis and Verification of Sound Absorbing Properties of Perforated Plate (타공판의 등가 흡음 물성치 유도와 공명기로서의 흡음성능 해석)

  • Yoon, Gil-Ho;Kim, Ki-Hyun;Choi, Jung-Sik;Yun, Su-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.139-144
    • /
    • 2015
  • Recently, to realize sound-absorbing structures, we have to insert sound-absorbing materials into wall. These shapes are taken limitations because sound-absorbing materials should be fixed. Therefore, the sound absorption is changed by environment that used the sound-absorbing materials. On the other hand, we will take same effect without sound-absorbing material, if we change the shape of wall to sound absorbing structure. If we use this sound absorbing structure, we can get benefits by removing limitation of materials. Therefore we suggest perforated plate for effective sound-absorbing structure. We confirmed the function of sound-absorption of this structure using equivalent property. Then, we found the similarity between perforated plate and resonator. Also, we verify these theories through computer simulation by FEM(Finite Element Method). Finally, we validated that perforated plate has function of sound absorption without sound-absorbing material. This perforated plate is used for sound-absorbing material of buildings and transportations such as vehicle, train etc. Also, these results could be further used basic tool for design of sound-absorption structure.

Design, Analysis, and Equivalent Circuit Modeling of Dual Band PIFA Using a Stub for Performance Enhancement

  • Yousaf, Jawad;Jung, Hojin;Kim, Kwangho;Nah, Wansoo
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.169-181
    • /
    • 2016
  • This work presents a new method for enhancing the performance of a dual band Planer Inverted-F Antenna (PIFA) and its lumped equivalent circuit formulation. The performance of a PIFA in terms of return loss, bandwidth, gain, and efficiency is improved with the addition of the proposed open stub in the radiating element of the PIFA without disturbing the operating resonance frequencies of the antenna. In specific cases, various simulated and fabricated PIFA models illustrate that the return loss, bandwidth, gain, and efficiency values of antennas with longer optimum open stub lengths can be enhanced up to 4.6 dB, 17%, 1.8 dBi, and 12.4% respectively, when compared with models that do not have open stubs. The proposed open stub is small and does not interfere with the surrounding active modules; therefore, this method is extremely attractive from a practical implementation point of view. The second presented work is a simple procedure for the development of a lumped equivalent circuit model of a dual band PIFA using the rational approximation of its frequency domain response. In this method, the PIFA's measured frequency response is approximated to a rational function using a vector fitting technique and then electrical circuit parameters are extracted from it. The measured results show good agreement with the electrical circuit results. A correlation study between circuit elements and physical open stub lengths in various antenna models is also discussed in detail; this information could be useful for the enhancement of the performance of a PIFA as well as for its systematic design. The computed radiated power obtained using the electrical model is in agreement with the radiated power results obtained through the full wave electromagnetic simulations of the antenna models. The presented approach offers the advantage of saving computation time for full wave EM simulations. In addition, the electrical circuit depicting almost perfect characteristics for return loss and radiated power can be shared with antenna users without sharing the actual antenna structure in cases involving confidentiality limitations.

Analysis and Application of Compact Planar Multi-Loop Self-Resonant Coil of High Quality Factor with Coaxial Cross Section (고품질 계수를 갖는 소형 평판형 동축 단면 다중 루프 자기 공진 코일 해석 및 응용)

  • Son, Hyeon-Chang;Kim, Jinwook;Kim, Do-Hyeon;Kim, Kwan-Ho;Park, Young-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.4
    • /
    • pp.466-473
    • /
    • 2013
  • In this paper, a compact planar multi-loop self-resonant coil of high quality factor with a coaxial cross section is proposed for effective wireless charging. The proposed coil has high Q-factor and a resonant frequency of a coil can be easily controlled by adjusting distributed capacitance. For designing the coil, a self-inductance and a distributed capacitance are calculated theoretically. The self-inductance is calculated from the sum of the mutual energies between small circular loops that are made by dividing the cross section of the coil. To verify its properties and calculation results, the self-resonant coils are fabricated by using a coaxial cable with characteristic impedance of $50{\Omega}$. The measured frequencies are very consistent with the calculated ones. In addition, the resonant frequency can be adjusted slightly by the tuning parameter ${\gamma}$. The resonant coils are applied to a tablet PC, the Q-factors of the Tx and Rx resonant coils are 282 and 135, respectively. As a result of measurement when height between the two resonant coils is 4.4 cm, the power transfer efficiency is more than 80 % within a radius of 5 cm.

Analysis of Acoustic Reflectors for SAW Temperature Sensor and Wireless Measurement of Temperature (SAW 온도센서용 음향 반사판 분석 및 무선 온도 측정)

  • Kim, Ki-Bok;Kim, Seong-Hoon;Jeong, Jae-Kee;Shin, Beom-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.1
    • /
    • pp.54-62
    • /
    • 2013
  • In this study, a wireless and non-power SAW (surface acoustic wave) temperature sensor was developed. The single inter-digital transducer (IDT) of SAW temperature sensor of which resonance frequency is 434 MHz was fabricated on $128^{\circ}$ rot-X $LiNbO_3$ piezoelectric substrate by semiconductor processing technology. To find optimal acoustic reflector for SAW temperature sensor, various kinds of acoustic reflectors were fabricated and their reflection characteristics were analyzed. The IDT type acoustic reflector showed better reflection characteristic than other reflectors. The wireless temperature sensing system consisting of SAW temperature sensor with dipole antenna and a microprocessor based control circuit with dipole antenna for transmitting signal to activate the SAW temperature sensor and receiving the signal from SAW temperature sensor was developed. The result with wireless SAW temperature sensing system showed that the frequency of SAW temperature sensor was linearly decreased with the increase of temperature in the range of 40 to $80^{\circ}C$ and the developed wireless SAW temperature sensing system showed the excellent performance with the coefficient of determination of 0.99.

Design and SAR Analysis of Broadband Monopole Antenna Using Loop and T-Shaped Patches (사각 루프와 T자형 패치를 결합한 광대역 평면형 모노폴 안테나 설계 및 SAR 분석)

  • Jang, Ju-Dong;Lee, Seungwoo;Kim, Nam;Choi, Dong-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • In this paper, a broadband planar monopole antenna for multi-band services is proposed. The physical size of the proposed antenna is miniaturized by folding a rectangular loop. And a resonance point in the 3.9 GHz band is reduced by a coupling phenomenon with the central part of the T-shaped patch and the folded rectangular loop. In addition, the T-shaped patch is inserted to the rectangular shaped monopole antenna due to deriving the broadband frequency characteristics. The frequency characteristic is optimized by adjusting the gap and length of the folded rectangular loops and a transverse diameter of the T-shaped patch. The antenna dimensions including the ground plane are $40{\times}60{\times}1.6mm^3$. It is fabricated on the FR-4 substrate(${\epsilon}_r$=4.4) using a microstrip line of $50{\Omega}$ for impedance matching. In the measured result, the bandwidth corresponding to the VSWR of 2:1 is 162 MHz(815~977 MHz) and 2,530 MHz(1.43~3.96 GHz). For analyzing the human effect by the proposed antenna, 1 g and 10 g averaged SARs are simulated and measured. As the simulated results, 1 g-averaged SAR is 1.044 W/kg, and 10 g-averaged SAR is 0.718 W/kg. This result are satisfied by the SAR guidelines which are 1.6 W/kg(1 g-averaged) and 2.0 W/kg(10 g-averaged).

SAR Analysis and Design the Microstrip Patch Antenna on Dual-Band(PCS/IMT-2000) (이중대역(PCS/IMT-2000) 마이크로스트립 패치 안테나 설계 및 구조에 따른 SAR 분석)

  • Choi, Yun-Hi;Shim, Ho-Sub;Kim, Nam;Park, Ju-Derk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.1
    • /
    • pp.12-20
    • /
    • 2004
  • In this paper, the detection of 1 g and 10 g averaged SAR on human head caused by PCS/IMT-2000 handhold phones is analyzed and discussed. Planar structured Single-Semi-disc MPA and double-Semi-disc MPA is designed and resonance characteristics with variety of design parameters are analyzed. As a result, 2.0 ㎓ center frequency, at the bandwidth of single-semi-disc MPA and double-semi-disc MPA are 15.5 % and 31 %, respectively. And monopole antenna with W4 length is designed and compared with double-semi-disc MPA in SARs. The SARs caused by double-semi-disc MPA on folder type handset are 0.811 W/kg and 0.507 W/kg and are about 32.7 % lower than monopole-1.206 W/kg and 0.7552 W/kg. While the radiation pattern of the monopole antenna is symmetrical, that of planar structured antenna is asymmetrical and SAR caused by double-semi-disc MPA is less than SAR by the monopole antenna.

Analysis of Dynamic Response Characteristics for KTX and EMU High-Speed Trains on PSC-Box Railway Bridges (PSC-box 철도교량의 KTX 및 EMU 고속열차에 대한 동적 응답 특성 분석)

  • Manseok Han;Min-Kyu Song;Soobong Shin;Jong-Han Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.61-68
    • /
    • 2024
  • The majority of high-speed railway bridges along the domestic Gyeongbu and Honam lines feature a PSC-box type structure with a span length ranging from 35 to 40m, which typically exhibits a first bending natural frequency of approximately 4 to 5Hz. When KTX high-speed trains transverse these bridges at speeds ranging from 290 to 310km/h, the vibration induced by the trains approaches the first bending natural frequency of the bridge. Furthermore, with the upcoming operation of a EMU-320 high-speed train and the anticipated increase in the speeds of these high-speed trains, there is a need to analyze the dynamic response of high-speed railway bridges. For this, based on measured responses from actual railway bridges, a numerical model was constructed using a numerical model updating technique. The dynamic response of the updated numerical model exhibited a strong agreement with the measured response from the actual railway bridges. Subsequently, this updated model was utilized to analyze the dynamic response characteristics of the bridges when KTX and EMU-320 trains operate at increased speeds. The maximum vertical displacement and acceleration at the mid-span of the bridges were also compared to those specified in the railway design standard with the increasing speed of KTX and EMU-320.

Intraindividual Comparison of Hepatocellular Carcinoma Washout between MRIs with Hepatobiliary and Extracellular Contrast Agents

  • Yeun-Yoon Kim;Young Kon Kim;Ji Hye Min;Dong Ik Cha;Jong Man Kim;Gyu-Seong Choi;Soohyun Ahn
    • Korean Journal of Radiology
    • /
    • v.22 no.5
    • /
    • pp.725-734
    • /
    • 2021
  • Objective: To intraindividually compare hepatocellular carcinoma (HCC) washout between MRIs using hepatobiliary agent (HBA) and extracellular agent (ECA). Materials and Methods: This study included 114 prospectively enrolled patients with chronic liver disease (mean age, 55 ± 9 years; 94 men) who underwent both HBA-MRI and ECA-MRI before surgical resection for HCC between November 2016 and May 2019. For 114 HCCs, the lesion-to-liver visual signal intensity ratio (SIR) using a 5-point scale (-2 to +2) was evaluated in each phase. Washout was defined as negative visual SIR with temporal reduction of visual SIR from the arterial phase. Illusional washout (IW) was defined as a visual SIR of 0 with an enhancing capsule. The frequency of washout and MRI sensitivity for HCC using LR-5 or its modifications were compared between HBA-MRI and ECA-MRI. Subgroup analysis was performed according to lesion size (< 20 mm or ≥ 20 mm). Results: The frequency of portal venous phase (PP) washout with HBA-MRI was comparable to that of delayed phase (DP) washout with ECA-MRI (77.2% [88/114] vs. 68.4% [78/114]; p = 0.134). The frequencies were also comparable when IW was allowed (79.8% [91/114] for HBA-MRI vs. 81.6% [93/114] for ECA-MRI; p = 0.845). The sensitivities for HCC of LR-5 (using PP or DP washout) were comparable between HBA-MRI and ECA-MRI (78.1% [89/114] vs. 73.7% [84/114]; p = 0.458). In HCCs < 20 mm, the sensitivity of LR-5 was higher on HBA-MRI than on ECA-MRI (70.8% [34/48] vs. 50.0% [24/48]; p = 0.034). The sensitivity was similar to each other if IW was added to LR-5 (72.9% [35/48] for HBA-MRI vs. 70.8% [34/48] for ECA-MRI; p > 0.999). Conclusion: Extracellular phase washout for HCC diagnosis was comparable between MRIs with both contrast agents, except for tumors < 20 mm. Adding IW could improve the sensitivity for HCC on ECA-MRI in tumors < 20 mm.

Study on Vibration Characteristics for Reducing Vibration of the Hopper-type Feeder (호퍼식급이기의 진동 저감을 위한 진동 특성 연구)

  • Lee, S.J.;Chang, D.I.;So, J.K.;Chang, H.H.;Yoon, T.J.
    • Journal of Animal Environmental Science
    • /
    • v.14 no.1
    • /
    • pp.53-60
    • /
    • 2008
  • This study was carried out to measure and analyze the vibration levels and modes produced by a hopper type feeder used at laying hen farms, to prevent the vibration resonance and to reduce the vibration of the hopper type feeder (6-tier). The most vibration in a layer house were produced by hopper type feeder as shown the previous study. According to the measurement results, the ratio of transmissibility was as high as 100-638% for natural frequency of 170 Hz or less. And vibration simulations were taken by the results of vibration mode analysis and the weakest points to vibrations were determined accordingly. Then measurement and analysis were taken for those points. The quantities of vibration were 4.6354-4.9118 g($g=9.81^m/s^2$) by axis. In this study, it was found that hopper type feeder generated vibration as much as to influence the ratio of laying eggs of layer. And by the analysis of vibration on the weakest points, design methods and equipment were suggested for isolating/reducing of vibration by each axis.

  • PDF