• Title/Summary/Keyword: Resolution phantom

Search Result 285, Processing Time 0.024 seconds

A Study for Analysis of Image Quality Based on the CZT and NaI Detector according to Physical Change in Monte Carlo Simulation (CZT와 NaI 검출기 물질 기반 물리적 변화에 따른 영상의 질 분석에 관한 연구: 몬테카를로 시뮬레이션)

  • Ko, Hye-Rim;Yoo, Yu-Ri;Park, Chan-Rok
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.741-748
    • /
    • 2021
  • In this study, we evaluated image quality by changing collimator length and detector thickness using the Geant4 Application for Tomographic Emission (GATE) simulation tool. The gamma camera based on the Cadimium Zinc Telluride (CZT) and NaI detectors is modeled. In addition the images were acquired by setting 1, 2, 3, 4, 5, and 6 cm collimator length and 1, 3, 5, and 7 mm detector thickness using point source and phantom, which is designed by each diameter (4.45, 3.80, 3.15, 2.55 mm) with 447, 382, 317, and 256 Bq. The sensitivity (cps/MBq) for point source, and signal to noise ratio (SNR) and profile for phantom at the 4.45 mm by drwan the region of interests were used for quantitative analysis. Based on the results, the sensitivity according to collimator length is 2.3 ~ 48.6 cps/MBq for CZT detector, and 1.8 ~ 43.9 cps/MBq for NaI detector. The SNR using phantom is 3.6~9.8 for CZT detector, and 2.9~9.5 for NaI detector. As the collimator length is increased, the image resolution is also improved according to profile results based on the CZT and NaI detector. In addition, the senistivity for detector thickness is 0.04 ~ 0.12 cps/MBq for CZT detector, and 0.03 ~ 0.11 cps/MBq. The SNR using phnatom is 7.3~9.8 count for CZT detector, and 5.9~9.5 for NaI detector. As the detector thickness is increased, the image resolution is decreased according to profile results based on the CZT and NaI detector due to scatter ray. In conclusion, we need to set the geometric material such as detector and collimator to acuquire suitable image quality in nuclear medicine.

Development of an Offline Based Internal Organ Motion Verification System during Treatment Using Sequential Cine EPID Images (연속촬영 전자조사 문 영상을 이용한 오프라인 기반 치료 중 내부 장기 움직임 확인 시스템의 개발)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Huh, Woong;Kim, Min-Kyu;Han, Young-Yih;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jing-Sung;Park, Hee-Chul;Ahn, Sung-Hwan;Lim, Do-Hoon;Choi, Doo-Ho
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.91-98
    • /
    • 2012
  • Verification of internal organ motion during treatment and its feedback is essential to accurate dose delivery to the moving target. We developed an offline based internal organ motion verification system (IMVS) using cine EPID images and evaluated its accuracy and availability through phantom study. For verification of organ motion using live cine EPID images, a pattern matching algorithm using an internal surrogate, which is very distinguishable and represents organ motion in the treatment field, like diaphragm, was employed in the self-developed analysis software. For the system performance test, we developed a linear motion phantom, which consists of a human body shaped phantom with a fake tumor in the lung, linear motion cart, and control software. The phantom was operated with a motion of 2 cm at 4 sec per cycle and cine EPID images were obtained at a rate of 3.3 and 6.6 frames per sec (2 MU/frame) with $1,024{\times}768$ pixel counts in a linear accelerator (10 MVX). Organ motion of the target was tracked using self-developed analysis software. Results were compared with planned data of the motion phantom and data from the video image based tracking system (RPM, Varian, USA) using an external surrogate in order to evaluate its accuracy. For quantitative analysis, we analyzed correlation between two data sets in terms of average cycle (peak to peak), amplitude, and pattern (RMS, root mean square) of motion. Averages for the cycle of motion from IMVS and RPM system were $3.98{\pm}0.11$ (IMVS 3.3 fps), $4.005{\pm}0.001$ (IMVS 6.6 fps), and $3.95{\pm}0.02$ (RPM), respectively, and showed good agreement on real value (4 sec/cycle). Average of the amplitude of motion tracked by our system showed $1.85{\pm}0.02$ cm (3.3 fps) and $1.94{\pm}0.02$ cm (6.6 fps) as showed a slightly different value, 0.15 (7.5% error) and 0.06 (3% error) cm, respectively, compared with the actual value (2 cm), due to time resolution for image acquisition. In analysis of pattern of motion, the value of the RMS from the cine EPID image in 3.3 fps (0.1044) grew slightly compared with data from 6.6 fps (0.0480). The organ motion verification system using sequential cine EPID images with an internal surrogate showed good representation of its motion within 3% error in a preliminary phantom study. The system can be implemented for clinical purposes, which include organ motion verification during treatment, compared with 4D treatment planning data, and its feedback for accurate dose delivery to the moving target.

Continued image Sending in DICOM of usefulness Cosideration in Angiography (혈관조영술에서 동영상 전송의 유용성 고찰)

  • Park, Young-Sung;Lee, Jong-Woong;Jung, Hee-Dong;Kim, Jae-Yeul;Hwang, Sun-Gwang
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.9 no.2
    • /
    • pp.39-43
    • /
    • 2007
  • In angiography, the global standard agreements of DICOM is lossless. But it brings on overload and takes too much store space in DICOM sever. Because of all those things we transmit images which is classified in subjective way. But this cause data loss and would be lead doctors to make wrong reading. As a result of that we try to transmit continued image (raw data) to reduce those mistakes. We got angiography images from the equipment(Allura FD20-Philips). And compressed it in two different methods(lossless & lossy fair). and then transmitted them to PACS system. We compared the quality of QC phantom images that are compressed by different compress method and compared spatial resolution of each images after CD copy. Then compared each Image's data volume(lossless & lossy fair). We measured spatial resolution of each image. All of them had indicated 401p/mm. We measured spatial resolution of each image after CD copy. We got also same conclusion (401p/mm). The volume of continued image (raw data) was 127.8MB(360.5 sheets on average) compressed in lossless and 29.5MB(360.5 sheets) compressed in lossy fair. In case of classified image, it was 47.35MB(133.7 sheets) in lossless and 4.5MB(133.7 sheets) in lossy fair. In case of angiography the diagnosis is based on continued image(raw data). But we transmit classified image. Because transmitting continued image causes some problems in PACS system especially transmission and store field. We transmit classified image compressed in lossless But it is subjective and would be different depend on radiologist. therefore it would make doctors do wrong reading when patients transfer another hospital. So we suggest that transmit continued image(raw data) compressed in lossy fair. It reduces about 60% of data volume compared with classified image. And the image quality is same after CD copy.

  • PDF

Design of the Detector Head for Single Photon Detection in Breast Cancer Diagnosis and Its Performance Evaluation (유방암진단에서의 단일광자검출을 위한 검출기 전단부의 설계와 성능평가)

  • Kim, Kwang-Hyun;Cho, Gyu-Seong;Chung, Woon-Kwan
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.4
    • /
    • pp.263-270
    • /
    • 2003
  • Monte Carlo simulation has been peformed to induce optimized parameters of the detector head of gamma camera for the diagnosis of breast cancer and to evaluate it under the diagnosis condition of the breast cancer. For the simulation, we used Tungsten collimator, having a lattice structured array with holes of $3mm{\times}3mm$ and septal thickness of 0.25 mm, which are corresponding to the pixellated photosensor. For driving optimum parameters we used Trade-Offs procedure between the geometric efficiency and the spatial resolution, varying the detector head components. In order to pre-evaluate the performance of the optimized detector head, we assumed diagnosis condition that the breast tumor is located in the middle of phantom with various sizes and its location is 25 mm from the collimator surface, considering background count caused by radiation sources from other organs. It was shown that the performance of the optimized detector head can be degraded according to the breast cancer size and the background count under real diagnosis conditions of breast cancer. Therefore, it is concluded that the spatial resolution, which is used as an indicator to distinguish the various sizes of breast cancer and is dependent on the characteristic of the detector head, appears to be meaningless in early diagnosis of the breast cancer.

Usability of Multiple Confocal SPECT SYSTEM in the Myocardial Perfusion SPECT Using $^{99m}Tc$ ($^{99m}Tc$을 이용한 심근 관류 SPECT에서 Multiple Confocal SPECT System의 유용성)

  • Shin, Chae-Ho;Pyo, Sung-Jai;Kim, Bong-Su;Cho, Yong-Gyi;Jo, Jin-Woo;Kim, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.65-71
    • /
    • 2011
  • Purpose: The recently adopted multiple confocal SPECT SYSTEM (hereinafter called IQ SPECT$^{TM}$) has a high difference from the conventional myocardial perfusion SPECT in the collimator form, image capture method, and image reconstruction method. This study was conducted to compare this novice equipment with the conventional one to design a protocol meeting the IQ SPECT, and also determine the characteristics and usefulness of IQ SPECT. Materials and Methods: 1. For the objects of LEHR (Low energy high resolution) collimator and Multiple confocal collimator, $^{99m}Tc$ 37MBq was put in the acrylic dish then each sensitivity ($cpm/{\mu}Ci$) was measured at the distance of 5 cm, 10 cm, 20 cm, 30 cm, and 40 cm respectively. 2. Based on the sensitivity measure results, IQ SPECT Protocol was designed according to the conventional general myocardial SPECT, then respectively 278 kBq/mL, 7.4 kBq/mL, and 48 kBq/mL of $^{99m}Tc$ were injected into the myocardial and soft tissues and liver site by using the anthropomorphic torso phantom then the myocardial perfusion SPECT was run. 3. For the comparison of FWHMs (Full Width at Half Maximum) resulted from the image reconstruction of LEHR collimator, the FWHMs (mm) were measured with only algorithms changed, in the case of the FBP (Filtered Back projection) method- a reconstruction method of conventional myocardial perfusion SPECT, and the 3D OSEM (Ordered subsets expectation maximization) method of IQ SPECT, by using $^{99m}Tc$ Line source. Results: 1. The values of IQ SPECT collimator sensitivity ($cpm/{\mu}Ci$) were 302, 382, 655, 816, 1178, and those of LEHR collimator were measured as 204, 204, 202, 201, 198, both at the distance of 5 cm, 10 cm, 20 cm, 30 cm, and 40 cm respectively. It was found the difference of sensitivity increases up to 4 times at the distance of 30 cm in the cases of IQ SPECT and LEHR. 2. The myocardial perfusion SPECT Protocol was designed according to the geometric characteristics of IQ SPECT based on the sensitivity results, then the phantom test for the aforesaid protocol was conducted. As a result, it was found the examination time can be reduced 1/4 compared to the past. 3. In the comparison of FWHMs according to the reconstructed algorithm in the FBP method and 3D OSEM method followed after the SEPCT test using a LEHR collimator, the result was obtained that FWHM rose around twice in the 3D OSEM method. Conclusion : The IQ SPECT uses the Multiple confocal collimator for the myocardial perfusion SPECT to enhance the sensitivity and also reduces examination time and contributes to improvement of visual screen quality through the myocardial-specific geometric image capture method and image reconstruction method. Due to such benefits, it is expected patients will receive more comfortable and more accurate examinations and it is considered a further study is required using additional clinical materials.

  • PDF

The Fabricating and Utilizing of the Transmission Scan Tool for I-131 Whole Body Scan (I-131 전신 스캔을 위한 Transmission Scan Tool 제작과 활용)

  • Shin, Chae-Ho;Pyo, Sung-Jai;Kim, Bong-Su;Cho, Yong-Gyi;Jo, Jin-Woo;Kim, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.40-46
    • /
    • 2009
  • Purpose: A whole body scan using a radioactive iodine (I-131) for the patients with differentiated thyroid cancer is generally an useful method to detect the remnant thyroid tissue, recurred lesion or metastasis lesion after a surgery. The high dose treatment using the radioactive iodine recently tends to increase, and a hospitalization wait for the treatment has been delayed for several months. In this hospital, the treatable patients per week were increased in number through expanding a water-purifier tank and the examination time also increased as the I-131 whole body scan patients increased. Improvement for this problem, this research reduce the existing examination time and classifying the lesion's exact position intended to by fabricating and utilizing the transmission scan tool and an excellent resolution for whole body imaging. Materials and Methods: After conducting the whole body scan for patients who visited the department from February to July 2008 and received the I-131 whole body scan using the ORBITER Gamma Camera. A rail was installed in the examination table for the transmission scan for show a contour of surface area and then the transmission image was obtained and fused to the whole body scan through fabricating the tool to put a flood phantom of diluted 2 mCi $^{99m}Tc$-pertechnetate. Results: Fused image of I-131 whole body scan and the transmission scan had the excellent resolution to discriminate an oral cavity or salivary gland region, neck region's lesion, and metastasis region's position through a simple marking, and could reduce the examination time of 8~28 minutes because without the additional local image. Conclusions: In I-131 whole body scan, the transmission scan can accurately show a contour of surface area through the attenuation of radioactivity, and is useful to indicate the remnant thyroid tissue or metastasis lesion's position by improving the resolution through the fusion image with alreadyexecuted I-131 whole body scan. Also, because the additional local image is not necessary, it can reduce the time required for the examination. It will extensively apply to other clinical examinations to be helpful for identifying an anatomical position because it shows the contour of surface area.

  • PDF

Study of Factors Controlling Exposure Dose and Image Quality of C-arm in Operation Room according to Detector Size of It (Mainly L-Spine AP Study) (수술 중 C-Arm Neutral AP 검사 시 조절인자에 따른 피폭선량 및 화질비교(L-Spine AP검사를 기준으로))

  • CHOI, Sung-Hyun;JO, Hwang-Woo;Dong, Kyung-Rae;Chung, Woon-Kwan;Choi, Eun-Jin;Song, Ha-jin
    • Journal of Radiation Industry
    • /
    • v.9 no.2
    • /
    • pp.85-90
    • /
    • 2015
  • Purpose: Time of operation has been reduced and accuracy of operation has been improved since C-arm, which offer real-time image of patient, was introduced in operation room. However, because of the contamination of patient, C-arm could not be used more appropriately. Therefore, this study is to know factors of controlling exposure dose, image quality and the exposed dose of health professional in operation room. Materials and methods: Height of Wilson frame (bed for operation) was fixed at 130 cm. Then, Model 76-2 Phantom, which was set by assembling manual of Fluke Company, was set on the bed. Head/Spine Fluoroscopy AEC mode was set for exposure condition. According to detector size of C-arm, the absorbed dose per min was measured in the 7 steps OFD (cm) from 10 cm to 40 cm (10, 15, 20, 25, 30, 35, 40 cm). In each step of OFD, the absorbed dose per min of same diameter of collimation was measured. Moreover, using Nero MAX Model 8000, exposure dose per min was measured according to 3 step of distance from detector (20 cm, 60 cm, 100 cm). Finally, resolution was measured by CDRH Disc Phantom and magnification of each OFD was measured by aluminum stick bar. Result: According to detector size of C-arm, difference of absorbed dose shows that the dose of 20 cm OFD is 1.750 times higher than the dose of 40 cm OFD. It means that the C-arm, which has smaller size of detector, shows the bigger difference of absorbed dose per min (p<0.05). In the difference of absorbed dose in the same step of OFD (from 20 cm to 40 cm), the absorbed dose of 9 inch detect or C-arm was 1.370 times higher than 12 inch' s (p<0.05). When OFD was set to 20 cm OFD, the absorbed dose of non-collimation case was approximately 0.816 times lower than the absorbed dose of collimation cases (p<0.05). When the distance was 20 cm from detector, exposed does includes first-ray and scatter-ray. When the distance was 60 cm and 100 cm from detector, exposed does includes just scatter-ray. So, there was the 2.200 times difference of absorbed does. Finally, when OFD was increased, spatial resolution was 4 to 5 step was increased. However, low contrast resolution was not relative. Moreover, there was 1.363 times difference of magnification (p<0.05). Conclusion: When C-Arm is used, avoiding contamination of patient is more important factor than reducing exposed dose of health professional in operation room. Just controlling exposure time is just way to reduce the exposed does of workers. However, in the case, non-probability influence could be occurred. Therefore, this study proved that the exposed dose will be reduced if the factors such as using small detector size of C-arm, setting OFD from 20 cm to 25 cm and non-collimating. Moreover, dose management of C-arm in the non-interesting area will be considered additionally.

Performance Characteristics of 3D GSO PET/CT Scanner (Philips GEMINI PET/DT) (3차원 GSO PET/CT 스캐너(Philips GEMINI PET/CT의 특성 평가)

  • Kim, Jin-Su;Lee, Jae-Sung;Lee, Byeong-Il;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.4
    • /
    • pp.318-324
    • /
    • 2004
  • Purpose: Philips GEMINI is a newly introduced whole-body GSO PET/CT scanner. In this study, performance of the scanner including spatial resolution, sensitivity, scatter fraction, noise equivalent count ratio (NECR) was measured utilizing NEMA NU2-2001 standard protocol and compared with performance of LSO, BGO crystal scanner. Methods: GEMINI is composed of the Philips ALLEGRO PET and MX8000 D multi-slice CT scanners. The PET scanner has 28 detector segments which have an array of 29 by 22 GSO crystals ($4{\times}6{\times}20$ mm), covering axial FOV of 18 cm. PET data to measure spatial resolution, sensitivity, scatter fraction, and NECR were acquired in 3D mode according to the NEMA NU2 protocols (coincidence window: 8 ns, energy window: $409[\sim}664$ keV). For the measurement of spatial resolution, images were reconstructed with FBP using ramp filter and an iterative reconstruction algorithm, 3D RAMLA. Data for sensitivity measurement were acquired using NEMA sensitivity phantom filled with F-18 solution and surrounded by $1{\sim}5$ aluminum sleeves after we confirmed that dead time loss did not exceed 1%. To measure NECR and scatter fraction, 1110 MBq of F-18 solution was injected into a NEMA scatter phantom with a length of 70 cm and dynamic scan with 20-min frame duration was acquired for 7 half-lives. Oblique sinograms were collapsed into transaxial slices using single slice rebinning method, and true to background (scatter+random) ratio for each slice and frame was estimated. Scatter fraction was determined by averaging the true to background ratio of last 3 frames in which the dead time loss was below 1%. Results: Transverse and axial resolutions at 1cm radius were (1) 5.3 and 6.5 mm (FBP), (2) 5.1 and 5.9 mm (3D RAMLA). Transverse radial, transverse tangential, and axial resolution at 10 cm were (1) 5.7, 5.7, and 7.0 mm (FBP), (2) 5.4, 5.4, and 6.4 mm (3D RAMLA). Attenuation free values of sensitivity were 3,620 counts/sec/MBq at the center of transaxial FOV and 4,324 counts/sec/MBq at 10 cm offset from the center. Scatter fraction was 40.6%, and peak true count rate and NECR were 88.9 kcps @ 12.9 kBq/mL and 34.3 kcps @ 8.84 kBq/mL. These characteristics are better than that of ECAT EXACT PET scanner with BGO crystal. Conclusion: The results of this field test demonstrate high resolution, sensitivity and count rate performance of the 3D PET/CT scanner with GSO crystal. The data provided here will be useful for the comparative study with other 3D PET/CT scanners using BGO or LSO crystals.

A study of beam hardening effect reduction occur in brain CT (Brain CT에서 발생하는 선속경화현상 감소방안에 관한 연구)

  • Kim, Hyeon-ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8479-8486
    • /
    • 2015
  • This study aim is occur in brain CT cause of beam hardening effect and reducing method, We will scan Bone opaque bead phantom on variation of image on the influence factor with equipment called 'Samatom Senation 16' with following listed herein : tube voltage, tube current, slice thickness, gantry angle, base line which affect beam-hardening effect. After that we are going to start Quantitative Analysis resulted in previous scanning and Qualitative Assessment with CT image sheet evaluation. result of quantitative analysis 140kVp $31.56{\pm}2.89HU$ on tube voltage, 150mA $-3.87{\pm}0.12HU$ on tube current, 3mm on slice thickness, and $13.31{\pm}1.03HU$ IOML on gantry angle which was the least beam-hardening effect. Like Qualitative Analysis, we went through Qualitative Assessment and most of valuers got a result of 140kVp on tube voltage, 150mA on tube current, 3mm on slice thickness. As before valuers evaluated gantry angle that scanned image from IOML or OML was the least beam-hardening effect occured. There are meaningful differences when we compare all theses factors statistically(P<0.05). therefore We consider that Minimizing artifact that caused by beam-hardening effect can provide better quality of image to deciphers and patients. if we rise tube voltage in permissible dose limit, set tube current in a limit that does not effect to image quality, use slice thickness too thin enough to harm resolution, use IOML or OML on gantry angle.

Anisotropy in a Few mm Regions from an Ir192 High Dose Rate Source Measured with a GafChromic Film in Acrylic Phantom (아크릴 팬톰에서 GafChromic 필름을 이용한 고선량률 근접 치료용 Ir-192 선원의 근접 거리에서 비등방성 측정)

  • Huh, Hyun-Do;Kim, Seong-Hoon;Park, Jin-Ho;Cho, Byung-Chul;Shin, Dong-Oh;Soo il Kwon;Chun, Ha-Chung;John J K Loh;Kim, Woo-Chul
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • Radiochromic film has several advantages; high spatial resolution, relatively low spectral sensitivity, near tissue equivalence and requires no special development procedure. The object of this study was to measure the anisotropy of an Ir-192 source (microSelectron manufactured by Nucletron) in a few mm regions from the source, using the GafChromic film. The GafChromic film was calibrated in the range of 0∼105 Gy, using a 4 MV photon beam, and the anisotropy function measured in an acrylic phantom using the GafChroimic film. The data obtained gave agreement to within 4.4% of the Monte Calro calculation, by J. F. Williamson, at a radial distance of 2.5 mm with polar angles of 50 to 130$^{\circ}$, while a maximum deviation of 17.6% was observed at angles near 140$^{\circ}$and agreement within 3.7% at a radial distance of 5 mm at polar angles between 35 to 150$^{\circ}$ and a maximum deviation of 7.6% was observed at angles near 30$^{\circ}$. A GafChromic film can be used as a more efficient detector for measuring the anisotropy of an HDR $^{192}$ Ir source at close distances than any other detector.

  • PDF