• 제목/요약/키워드: Resolution of imaging system

검색결과 580건 처리시간 0.025초

초단주기 지표온도 위성자료와 다변량 공간통계기법을 결합한 산지 지역의 기온 분포 추정 (Estimating Air Temperature over Mountainous Terrain by Combining Hypertemporal Satellite LST Data and Multivariate Geostatistical Methods)

  • 박선엽
    • 대한지리학회지
    • /
    • 제44권2호
    • /
    • pp.105-121
    • /
    • 2009
  • 지형 굴곡이 심한 하와이 화산섬의 경우, 측후소 분포가 매우 제한적이어서 공식적인 기온 분포도가 작성되지 못하고 있는 실정이다. 본 연구에서는 이러한 기온 지도화의 문제점을 해결하는 방법으로 위성기반의 지표온도 자료로부터 기온추정치를 추출하여 내삽법에 필요한 입력자료로 사용하였다. 추출된 온도값을 표본값으로하여 거리 역비례 가중치법(IDW)과 공동크리깅 (cokriging)을 적용하여 기온추정치를 지도화하였다. 기온과 고도값을 함께 이용한 cokriging이 IDW에 비해 크게 향상된 추정 오차값을 나타내었다. Cokriging은 주 변수와 고도와 같은 추가 변수 간의 상관관계가 유의하게 나타날 때 효과적으로 사용되는 내삽법이지만, 내삽 정확도는 계절적인 기상조건에 민감하게 영향받는 것으로 조사되었다. 강수량이 크게 증가하는 우기에는 건기에 비해 공간적인 기온변화가 크며, 이에 따라 기온 추정 오차값도 우기에 높게 나타났다.

형광체 기반 X선 광 변조기를 위한 비정질 셀레늄 필름 특성 (Characterization of the a-Se Film for Phosphor based X-ray light Modulator)

  • 강상식;박지군;조성호;차병열;신정욱;이건환;문치웅;남상희
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권2호
    • /
    • pp.306-309
    • /
    • 2007
  • PXLM(Phosphor based x-ray light modulator) has a combined structure by phosphor, photoconductor, and liquid crystal and it can realize x-ray image of high resolution in clinical diagnosis area. In this study, we fabricated a photoconductor and investigated electrical and optical properties to confirm application possibility of radiator detector of PXLM structure. As photoconductor, amorphous selenium(a-Se), which is used most in DR(Digital radiography) of direct conversion method, was used and for formation of thin film, it was formed as $20{\mu}m-thick$ by using thermal vacuum evaporation system. For a produced a-Se film, through XRD(X-ray diffraction) and SEM(Scanning electron microscope), we investigated that amorphous structure was uniformly established and through optical measurement, for visible light of 40 $0\sim630nm$, it had absorption efficiency of 95 % and more. After fabricated a-Se film on the top of ITP substrate, hybrid structure was manufactured through forming $Gd_2O_3:Eu$ phosphor of $270{\mu}m-thick$ on the bottom of the substrate. As the result to confirm electrical property of the manufactured hybrid structure, in the case of appling $10V/{\mu}m$, leakage current of $2.5nA/cm^2$ and x-ray sensitivity of $7.31nC/cm^2/mR$ were investigated. Finally, we manufactured PXLM structure combined with hybrid structure and liquid crystal cell of TN(Twisted nematic) mode and then, investigated T-V(Transmission vs. voltage) curve of external light source for induced x-ray energy. PXLM structure showed a similar optical response with T-V curve that common TN mode liquid crystal cell showed according to electric field increase and in appling $50\sim100V$, it showed linear transmission efficiency of $12\sim18%$. This result suggested an application possibility of PXLM structure as radiation detector.

$BrO_2/a-Se$ 구조의 방사선 변환센서에서 a-Se에 첨가된 조성비 변화에 따른 I-V 특성 비교 (Comparison of the I-V Characteristic as Various Composition ratio of Iodine in a-Se of $BrO_2/a-Se$ based Radiation Conversion Sensor)

  • 최장용;박지군;공현기;안상호;남상희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.440-443
    • /
    • 2002
  • Present1y the X-Ray diagnosis system is a real condition that is changing by digital ways in it's existent analog ways. This digital radiation detector is divided by the direct method and the indirect method. The indirect method of applied voltage has special qualities that the resolution is low than direct method by diffusion effect that happens. The conversion process ( radiation${\rightarrow}$visible ray${\rightarrow}$electrical signal of two times, has shortcomings that the energy conversion efficiency of electrical signal is low. The direct method has shortcomings that need strong electric fie1d to detect electrical signal efficiently. This research achieved to develop digital detector of the Hybrid method that have form that mixes two ways to supplement shortcoming of direct. indirect method. A studied electrical characteristic by Iodine's Mixture ratio change is added to selenium in the detector which has a multi-layer structure (Oxybromide + a-Se). There are 8 kinds of Manufactured compositions to amorphous selenium Iodine each 30ppm, 100ppm, 200 ppm, 300ppm, 400ppm, 500ppm, 600ppm, 700ppm by a doped photoconductor through a vacuum thermal evaporation method. The phosphor layer is consisted of Oxybromide ($BrO_2$) which uses optical adhesives multi-layer structure. The manufactured compositions calculates and compares Net Charge and signal to noise ratio measuring Photocurrent about Darkcurrent and X-ray. When doped Iodine Mixture ratio is 500ppm to the multi-layer structure (Oxybromide + a-Se), applied voltage of $3V/{\mu}m$, leakage current of compositions $2.61nA/cm^2$ and net charge value by 764pC/$cm^2$/mR then the best result appeared.

  • PDF

The Far-ultraviolet Spectrum Study of Comet C/2001 Q4 (NEAT)

  • Lim, Yeo-Myeong;Min, Kyoung-Wook;Feldman, Paul D.;Han, Wanyong;Edelstein, Jerry
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.68.1-68.1
    • /
    • 2014
  • We present the results of far-ultraviolet (FUV) observations of comet C/2001 Q4 (NEAT) obtained with Far-ultraviolet Imaging Spectrograph (FIMS) on board the Korean microsatellite STSAT-1, which operated at an altitude of 700 km in a sun-synchronous orbit. FIMS is a dual channel imaging spectrograph (S-channel 900-1150 ${\AA}$, L-channel 1350-1710 ${\AA}$, and ${\lambda}/{\Delta}{\lambda}$ ~ 550 for both channels) with large image fields of view (S-channel $4.0^{\circ}{\times}4.6^{\prime}$, L-channel $7.5^{\circ}{\times}4.3^{\prime}$, and angular resolution ~ $5-10^{\prime}$) optimized for the observation of diffuse emission of astrophysical radiation. Comet C/2001 Q4 (NEAT) were made in two campaigns during its perihelion approach between May 8 and 15, 2004. Based on the scanning mode observations in the wavelength band of 1400-1700 ${\AA}$, we have constructed an image of the comet with an angular size of $5^{\circ}{\times}5^{\circ}$, which corresponds to the central coma region. Several important fluorescence emission lines were detected including S I multiplets at 1429 and 1479 ${\AA}$, C I multiplets at 1561 and 1657 ${\AA}$, and the CO $A^1{\Pi}-X^1{\Sigma}^+$ Fourth Positive system; we have estimated the production rates of the corresponding species from the fluxes of these emission lines. The estimated production rate of CO was $Q_{CO}=(2.65{\pm}0.63){\times}10^{28}s^{-1}$, which is 6.2-7.4% of the water production rate and is consistent with earlier predictions. The average carbon production rate was estimated to be $Q_C={\sim}1.59{\times}10^{28}s^{-1}$, which is ~60% of the CO production rate. However, the observed carbon profile was steeper than that predicted using the two-component Haser model in the inner coma region, while it was consistent with the model in the outer region. The average sulfur production rate was $Q_S=(4.03{\pm}1.03){\times}10^{27}s^{-1}$, which corresponds to ~1% of the water production rate.

  • PDF

Volumetric accuracy of cone-beam computed tomography

  • Park, Cheol-Woo;Kim, Jin-ho;Seo, Yu-Kyeong;Lee, Sae-Rom;Kang, Ju-Hee;Oh, Song-Hee;Kim, Gyu-Tae;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • 제47권3호
    • /
    • pp.165-174
    • /
    • 2017
  • Purpose: This study was performed to investigate the influence of object shape and distance from the center of the image on the volumetric accuracy of cone-beam computed tomography (CBCT) scans, according to different parameters of tube voltage and current. Materials and Methods: Four geometric objects(cylinder, cube, pyramid, and hexagon) with predefined dimensions were fabricated. The objects consisted of Teflon-perfluoroalkoxy embedded in a hydrocolloid matrix (Dupli-Coe-Loid TM; GC America Inc., Alsip, IL, USA), encased in an acrylic resin cylinder assembly. An Alphard Vega Dental CT system (Asahi Roentgen Ind. Co., Ltd, Kyoto, Japan) was used to acquire CBCT images. OnDemand 3D (CyberMed Inc., Seoul, Korea) software was used for object segmentation and image analysis. The accuracy was expressed by the volume error (VE). The VE was calculated under 3 different exposure settings. The measured volumes of the objects were compared to the true volumes for statistical analysis. Results: The mean VE ranged from -4.47% to 2.35%. There was no significant relationship between an object's shape and the VE. A significant correlation was found between the distance of the object to the center of the image and the VE. Tube voltage affected the volume measurements and the VE, but tube current did not. Conclusion: The evaluated CBCT device provided satisfactory volume measurements. To assess volume measurements, it might be sufficient to use serial scans with a high resolution, but a low dose. This information may provide useful guidance for assessing volume measurements.

특징 추출을 이용한 다중 영상 정합 및 융합 연구 (Multimodality Image Registration and Fusion using Feature Extraction)

  • 우상근;김지현
    • 한국컴퓨터정보학회논문지
    • /
    • 제12권2호
    • /
    • pp.123-130
    • /
    • 2007
  • 본 논문에서는 소동물 생체내 실험시 서로 다른 장비에서 획득된 영상의 융합 및 정합을 위한 방법을 제안한다. 마우스의 꼬리 정맥에 $[[^{18}F]FDG$를 주사하여 60분 섭취후 서로 다른 장비에서 동일한 위치의 영상을 획득하기 위하여 아크릴 재질의 소동물 가이드에 기준마크를 설정하고 microPET과 CT 영상을 획득하였다. MicroPET으로 획득된 리스트모드(list-mode) 데이터는 Fourier Rebinning(FRB) 방법을 사용하여 사이노그램(Sinogram)으로 변환 후 4 번의 반복횟수를 가지는 Ordered Subset Expectation Maximization(OSEM) 알고리즘으로 재구성하였다. MicroPET 영상획득후 PET/CT의 CT를 이용하여 CT영상을 획득하였다. MicroPET 영상에서 폐영역을 정확히 찾아내는 어려움이 있어. 해부학적 정보를 제공하는 CT 영상을 이용하여 폐 영역을 구분하였다. 영상 융합을 위한 불일치 부분을 해결하기 위하여 기준마크의 정보와 폐 영역의 정보를 이용하여 회전과 이동정보를 가지는 어파인 (affine) 변환 행렬 구하여 영상 정합에 사용하였다. 이 방법은 정량적 정확성과 영상 해석의 정확성을 개선할 것으로 기대된다.

  • PDF

양성자 선량 분포 검증을 위한 즉발감마선 분포측정 장치 최적화 연구 (Study on Optimization of Detection System of Prompt Gamma Distribution for Proton Dose Verification)

  • 이한림;민철희;박종훈;김성훈;김찬형
    • 한국의학물리학회지:의학물리
    • /
    • 제23권3호
    • /
    • pp.162-168
    • /
    • 2012
  • 양성자 치료에서 치료의 목표를 달성하고 환자의 안전을 제고하기 위해 인체 내 양성자 빔의 분포를 확인하는 것이 중요하다. 양성자 선량분포와 밀접한 관계가 있는 즉발감마선의 2차원 분포 측정을 위하여 본 연구팀에서는 다수의 CsI(Tl) 섬광체가 1차원 종형으로 배열된 검출기 배열과 집속장치 및 다채널 신호처리 장치로 이루어진 측정장치를 개발하고 있다. 이에 본 연구에서 몬테칼로 기반의 MCNPX 코드를 이용하여 최적화된 측정 장치를 설계하고자 하였다. 즉발감마선을 효과적으로 측정하기 위해 CsI(Tl) 섬광체의 크기를 $6{\times}6{\times}50mm^3$로 결정하였으며, 배경감마선의 영향을 최소화하고 빔의 진행방향에서 수직방향으로 발생하는 즉발감마선만 측정하기 위해 집속장치의 구멍 크기는 면적 $6{\times}6mm^2$, 길이 150 mm로 최적화되었다. 150 MeV 양성자 빔에 대한 성능 예측 전산모사연구를 수행한 결과, 본 연구에서 최적화된 측정 장치를 통해 즉발감마선 2차원 분포를 측정할 수 있었으며, 1 mm 오차범위에서 양성자 빔의 비정을 결정할 수 있었다. 이를 바탕으로 현재 다채널의 신호처리 장치를 개발하고 있으며 실제 양성자 빔을 이용한 즉발감마선 분포측정을 통해 측정 장치의 성능을 검증할 것이다.

Paschen ${\alpha}$ Galactic Plane Survey with MIRIS: the Preliminary Results for $l=280^{\circ}-100^{\circ}$

  • Kim, Il-Joong;Pyo, Jeonghyun;Jeong, Woong-Seob;Han, Wonyong;Park, Won-Kee;Lee, Dukhang;Moon, Bongkon;Park, Sung-Joon;Park, Youngsik;Lee, Dae-Hee;Ko, Kyeongyeon;Seon, Kwang-Il;Kim, Min Gyu;Lee, Hyung Mok;Matsumoto, Toshio
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.78.2-78.2
    • /
    • 2014
  • MIRIS (Multi-purpose Infrared Imaging System) is the primary payload on the Korean science and technology satellite, STSAT-3, which was launched on 2013 November 21. It is designed to observe the near-infrared sky with a $3.67^{\circ}{\times}3.67^{\circ}$ field of view and a $51.6^{{\prime}{\prime}}{\times}51.6^{{\prime}{\prime}}$ pixel resolution. Using two narrow-band filters at $1.88{\mu}m$ (Pa ${\alpha}$ line) and $1.84+1.92{\mu}m$ (Pa ${\alpha}$ dual continuum), the Paschen ${\alpha}$ Galactic plane survey has been carrying out, and the area for the Galactic longitude from $+280^{\circ}$ to $+100^{\circ}$ (with the width of $-3^{\circ}$ < b < $+3^{\circ}$) has been covered by 2014 August 31. In this contribution, we present the preliminary results of the MIRIS Paschen ${\alpha}$ emission maps and compare them with other wavelength maps such as $H{\alpha}$ and dust maps. Many of the Paschen ${\alpha}$ features have been detected along the plane, and some of them are weak or invisible in the $H{\alpha}$ map and coincide well with dense cloud regions.

  • PDF

IGRINS First Light Instrumental Performance

  • Park, Chan;Yuk, In-Soo;Chun, Moo-Young;Pak, Soojong;Kim, Kang-Min;Pavel, Michael;Lee, Hanshin;Oh, Heeyoung;Jeong, Ueejeong;Sim, Chae Kyung;Lee, Hye-In;Le, Huynh Anh Nguyen;Strubhar, Joseph;Gully-Santiago, Michael;Oh, Jae Sok;Cha, Sang-Mok;Moon, Bongkon;Park, Kwijong;Brooks, Cynthia;Ko, Kyeongyeon;Han, Jeong-Yeol;Nah, Jakyuong;Hill, Peter C.;Lee, Sungho;Barnes, Stuart;Park, Byeong-Gon;T., Daniel
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.52.2-52.2
    • /
    • 2014
  • The Immersion Grating Infrared Spectrometer (IGRINS) is an unprecedentedly minimized infrared cross-dispersed echelle spectrograph with a high-resolution and high-sensitivity optical performance. A silicon immersion grating features the instrument for the first time in this field. IGRINS will cover the entire portion of the wavelength range between 1.45 and $2.45{\mu}m$ accessible from the ground in a single exposure with spectral resolution of 40,000. Individual volume phase holographic (VPH) gratings serve as cross-dispersing elements for separate spectrograph arms covering the H and K bands. On the 2.7m Harlan J. Smith telescope at the McDonald Observatory, the slit size is $1^{\prime\prime}{\times}15^{\prime\prime}$. IGRINS has a $0.27^{\prime\prime}$ pixel-1 plate scale on a $2048{\times}2048$ pixel Teledyne Scientific & Imaging HAWAII-2RG detector with SIDECAR ASIC cryogenic controller. The instrument includes four subsystems; a calibration unit, an input relay optics module, a slit-viewing camera, and nearly identical H and K spectrograph modules. The use of a silicon immersion grating and a compact white pupil design allows the spectrograph collimated beam size to be 25mm, which permits the entire cryogenic system to be contained in a moderately sized rectangular vacuum chamber. The fabrication and assembly of the optical and mechanical hardware components were completed in 2013. In this presentation, we describe the major design characteristics of the instrument and the early performance estimated from the first light commissioning at the McDonald Observatory.

  • PDF

An exosolar planetary system N-body simuInfrared Spectro-Photometric Survey in Space: NISS and SPHEREx Missions

  • Jeong, Woong-Seob;Kim, Minjin;Im, Myungshin;Lee, Jeong-Eun;Pyo, Jeonghyun;Song, Yong-Seon;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Jo, Youngsoo;Lee, Duk-Hang;Ko, Kyeongyeon;Kim, Il-Joong;Park, Youngsik;Yang, Yujin;Ko, Jongwan;Lee, Hyung Mok;Shim, Hyunjin;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.47.1-47.1
    • /
    • 2018
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 have successfully developed by KASI. The capability of both imaging and spectroscopy is a unique function of the NISS. At first, it have realized the low-resolution spectroscopy (R~20) with a wide field of view of $2{\times}2deg$. in a wide near-infrared range from 0.95 to $2.5{\mu}m$. The major scientific mission is to study the cosmic star formation history in local and distant universe. It will also demonstrate the space technologies related to the infrared spectro-photometry in space. Now, the NISS is ready to launch in late 2018. After the launch, the NISS will be operated during 2 years. As an extension of the NISS, the SPEHREx (Spectro-Photometer for the History of the Universe Epoch of Reionization, and Ices Explorer) is the NASA MIDEX (Medium-class Explorer) mission proposed together with KASI (PI Institute: Caltech). It will perform the first all-sky infrared spectro-photometric survey to probe the origin of our Universe, to explore the origin and evolution of galaxies, and to explore whether planets around other stars could harbor life. Compared to the NISS, the SPHEREx is designed to have much more wide FoV of $3.5{\times}11.3deg$. as well as wide spectral range from 0.75 to $5.0{\mu}m$. After passing the first selection process, the SPHEREx is under the Phase-A study. The final selection will be made in the end of 2018. Here, we report the status of the NISS and SPHEREx missions.

  • PDF