• Title/Summary/Keyword: Resistivity monitoring

Search Result 151, Processing Time 0.025 seconds

Electrical resistivity monitoring of a scale model experiment for geological $CO_2$ sequestration (전기비저항에 의한 지중저장 이산화탄소 거동관측 모의실험)

  • Park, Mi-Kyung;Jang, Han-Nu-Ree;Kim, Hee-Joon;Wang, Soog-Yun;Lee, Min-Hee
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.173-178
    • /
    • 2007
  • Time-lapse electrical resistivity measurements have been made in a scale model experiment for geological $CO_2$ sequestration in aquifer. Three types of $CO_2$ injection are tested in a water tank filled with glass beads. These are $CO_2$ dissolved into filtered tap water, $CO_2$ gas, and mineral oil. The mineral oil is a substitute for liquid phase of supercritical $CO_2$. For reconstructing three-dimensional resistivity images, we measure potential differences at 32 potential dipoles on the top surface of the tank due to two current dipoles on the front and back sides. The resultant resistivity images clearly show the movement of injected $CO_2$ in aquifer.

  • PDF

Detection of Sea-water Intrusion Caused by Tidal Action Using DC Resistivity Monitoring (전기비저항 모니터링을 이용한 해수침투 파악)

  • Hwang, Hak-Soo;Lee, Sang-Kyu;Ko, Dong-Chan;Kim, Yang-Soo;Park, In-Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • The 1 $km^2$ area studied is located in Sukchun-ri, Hwasung-koon, the southern part of Kyeonggi-do. Even though this site has been known as a contaminated area caused by seawater intrusions, geophysical and geochemical surveys have never been carried out at the site to determine the extent of the seawater contamination and to investigate whether the seawater intrusion is in progress. The purpose of this study is to determine the extent of seawater contamination and a preferred channel of the seawater intrusion using geophysical methods such as DC resistivity surveys with Schlumberger array and a dipole-dipole array. In order to determine whether the seawater intrusion is in progress in the area, DC resistivity monitoring with Schlumberger array was performed. According to the resistivity map obtained from the inversion of the resistivity data measured with Schlumberger array, the study area is divided into two districts as relatively lowly resistive (less than 30 ohm-m) and highly resistive (more than 30 ohm-m) areas. The distribution of the lowly resistive area is consistent with the distribution of the layer composed of clay minerals, and the resistivity of this layer decreases slowly as approaching to the old seashore. Hydrogeological analysis shows that the clay layer within a distance of about 200 m from the seashore has been already contaminated by sea-water and its electric conductivity is 8 times higher than that of the sand layer covered by the clay layer. According to the results of the 2-dimensional DC resistivity surveys with a dipole-dipole array, there are two preferred channels of the seawater intrusion in the site, and both the channels are in the NW-SE direction from the old seashore. The lowly resistive zone in the southern channel extends to a depth of 80 m. The DC resistivity monitoring with Schlumberger array was carried out along the preferred channel which has the low resistivity Bone (fracture zone) that extended to a depth of 80 m. The time series of apparent resistivity, measured at a distance of 260 m from the old coast line, fluctuates with a period of 12 hours. From these observations, it can be concluded that the seawater intrusion caused by tidal action is still in progress along the fractured zone interpreted by the DC resistivity surveys with a dipole-dipole array.

  • PDF

A Galvanic Sensor for Monitoring the External and Internal Corrosion Damage of Buried Pipelines

  • Choi, Yoon-Seok;Kim, Jung-Gu;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.4 no.5
    • /
    • pp.178-190
    • /
    • 2005
  • In order to develop a new corrosion sensor for detecting and monitoring the external and internal corrosion damage of buried pipeline, the electrochemical property of sensors and the correlation of its output to corrosion rate of steel pipe, were evaluated by electrochemical methods in two soils of varying resistivity (5,000 ohm-cm, 10,000 ohm-cm) and synthetic tap water environments. In this paper, two types of galvanic probes were manufactured: copper-pipeline steel (Cu-CS) and stainless steel-pipeline steel (SS-CS). The corrosion behavior in synthetic groundwater and synthetic tap water for the different electrodes was investigated by potentiodynamic test. The comparison of the sensor output and corrosion rates revealed that a linear relationship was found between the probe current and the corrosion rates. In the soil resistivity of $5,000{\Omega}-cm$ and tap water environments, only the Cu-CS probe had a good linear quantitative relationship between the sensor output current and the corrosion rate of pipeline steel. In the case of $10,000{\Omega}-cm$, although the SS-CS probe showed a better linear correlation than that of Cu-CS probe, the Cu-CS probe is more suitable than SS-CS probe due to the high current output.

Application of Electrical and Small-Loop EM survey to the Identification of the Leachate at a Waste Landfill in Jeiu Island (제주도 쓰레기매립장 침출수 조사를 위한 전기 및 소형루프 전자탐사의 적용)

  • Song Sung-Ho;Yong Hwan-Ho;An Jung-Gi;Kim Gee-Pyo
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.3
    • /
    • pp.143-152
    • /
    • 2003
  • Among the various geophysical approaches to identify the leakage of leachate with conductivity variation, conventional electrical resistivity survey has been mainly used at waste landfill. We adopted small-loop electromagnetic (EM) survey using multi-frequencies in parallel with electrical resistivity survey to delineate the leakage of leachate through the shallow soil layer at a waste landfill in Jeju Island, and also with self-potential monitoring to detect the streaming potential produced by the movement of leachate. There were no evidences of leakage from waste landfill according to the results of the electrical resistivity survey and SP monitoring, and it was also true from the results of water quality analysis at stream around waste landfill periodically. On the other hand, the results of one-dimensional inversion of spatially-filtered small-loop EM survey data showed the anomalous zone of low resistivity with depth both around and inner waste landfill.

Three-Dimensional Resistivity Modeling by Serendipity Element (Serendipity 요소법에 의한 전기비저항 3차원 모델링)

  • Lee, Keun-Soo;Cho, In-Ky;Kang, Hye-Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.1
    • /
    • pp.33-38
    • /
    • 2012
  • A resistivity method has been applied to wide range of engineering and environmental problems with the help of automatic and precise data acquisition. Thus, more accurate modeling and inversion of time-lapse monitoring data are required since resistivity monitoring has been introduced to quantitatively find out subsurface changes With respect to time. Here, we used the finite element method (FEM) for 3D resistivity modeling since the method is easy to realize complex topography and arbitrary shaped anomalous bodies. In the FEM, the linear elements, also referred to as first order elements, have certain advantages of simple formulation and narrow bandwidth of system equation. However, the linear elements show the poor accuracy and slow convergence of the solution with respect to the number of elements or nodes. To achieve the higher accuracy of finite element solution, high order elements are generally used. In this study, we developed a 3D resistivity modeling program using high order Serendipity elements. Comparing the Serendipity element solutions for a cube model with the linear element solutions, we assured that the Serendipity element solutions are more accurate than the linear element solutions in the 3D resistivity modeling.

Application of Electrical Resistivity Measurement to an Evaluation of Saline Soil in Cropping Field (염류집적 농경지에서 전기비저항 탐사기법의 활용성)

  • Yoon, Sung-Won;Park, Sam-Gyu;Chun, Hyen-Jung;Han, Keung-Hwa;Kang, Seong-Soo;Kim, Myung-Suk;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1035-1041
    • /
    • 2011
  • Salinity of soil under the plastic film houses in Korea is known as a significant factor to lower the crop production and to hamper the sustainable agricultural land management. In this study we propose a field monitoring technique to examine the methods applied to minimize the adverse effect of salts in soil based on the relationship between soil electrical characteristics and soil properties. Field experiments for 4 different treatments (water only, fertilizer only, DTPA only, and DTPA and fertilizer together) were conducted on soils at the plastic film house built for cultivating a cucumber plant located at Chunan-si, Chungchungnam-do in Korea. The electrical resistivity was measured by both a dipole-dipole and wenner multi-electrodes array method. After the electrical resistivity measurement we also measured the soil water content, temperature, and electrical conductivity on surface soil. The resulted image of the interpreted resistivity by the inversion technique presented a unique spatial distribution depending on the treatment, implying the effect of the different chemical components. It was also highly suspected that resistivity response changed with the nutrients level, suggesting that our proposed technique could be the effective tool for the monitoring soil water as well as nutrient during the cropping period. Especially, subsoils under DTPA treatment at 40 to 60 cm depth typically presented lower soil water accumulation comparing to subsoils under non-DTPA treatment. It is considered that DTPA resulted in increase of a root water uptake. However, our demonstrated results were mainly based on qualitative comparison. Further experiments need to be conducted to monitor temporal changes of electrical resistivity using time lapse analysis, providing that a plant root activity difference based on changes of soil water and nutrients level in time.

Surface Characterization of Silicone Rubber for Outdoor Insulation by Measurement of Surface Voltage Decay

  • Youn, Bok-Hee;Huh, Chang-Su;Cho, Han-Gu
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.12C no.4
    • /
    • pp.214-219
    • /
    • 2002
  • The influence of ultraviolet (UV) irradiation and corona on the surface degradation of high temperature vulcanized (HTV) silicone rubber used for outdoor insulation through measuring surface voltage decay after corona charging, surface resistivity, contact angle and X-ray photoelectron spectroscopy (XPS) analysis was studied. The surface resistivity calculated by the surface voltage decay was compared with a value directly obtained from the three electrode method having the guard ring electrode. A good agreement between the two methods for surface resistivity was obtained. UV treated specimens showed the slower decrease of surface voltage decay, while the corona exposed specimens showed a dramatically faster decrease. Although both artificial treatments cause the same oxidative products, which was confirmed with XPS, we could distinguish the difference between the reactions of the two treatments by monitoring the surface voltage decay on corona-charged specimen. In addition, we could derive the specific surface states of the silicone rubber treated by accelerated artificial aging factors and the degradation process.

Cathodic Protection Behavior of Coastal Bridge Structure with Sacrificial Anode Cathodic Protection System (희생양극식 음극방식이 적용된 해안 교량 구조물의 방식거동)

  • Ha, Ji-Myung;Jin, Chung-Kuk;Jeong, Jin-A
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.242-246
    • /
    • 2012
  • This measurement represents the effectiveness of sacrificial anode cathodic protection (SACP) system in a coastal bridge structure. To verify the cathodic protection (CP) effect, the monitoring sensor (DMS-100) that could measure potential, corrosion rate, current, concrete resistivity, and temperature was embedded. The measurement conducted for three years after CP system was installed. Specifically, due to the fact that fresh water and sea water was repeated in the bridge structure, this bridge structure presented special CP behavior. Measurement factors were CP potential, CP current, concrete resistivity, and depolarization potential. In addition, visual inspection was also carried out. As a result of current and depolarization measurement, CP system was well activated in most piers.

CONDUCTIVITIES OF SEA-BOTTOM SEDIMENTS

  • HoWoongShon
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.2
    • /
    • pp.79-87
    • /
    • 2003
  • An in-situ four-electrode contact resistivity probe system was designed, and field-tested in submarine sediments. Seismic survey was also performed to support and compare the results of electric survey. The probe was designed to be driven to selected depths below the seafloor using a Vibracore system. The four insulated electrodes were, spaced equidistant across the wedge, were extended beyond the probe tip to minimize effects of sediment disturbance by the wedge insertion. In-situ measurements of resistivity were recorded on board by precision electronic equipment consisting of signal generators and processors, and by temperature- monitoring systems. Overall limits of uncertainty at respective depths below the seafloor are up to ±10% of the measured values. Best estimates of conductivity are considered to be ±3 percent of the reported values. Resistivity measurements were made at six sites in carbonate sediments to a maximum depth of penetration of about 5 m. Average values of conductivity range between 0.88 and 1.21 mho/m. The results show the seabed is composed of alternating layers of relatively high-conductivity material (0.8 to 1.4 mho/m) in thicknesses of more or less one meter and layers about 30 cm thick having relatively low conductivities (0.4 to 0.8 mho/m).

  • PDF

Theoretical and experimental investigation of piezoresistivity of brass fiber reinforced concrete

  • Mugisha, Aurore;Teomete, Egemen
    • Computers and Concrete
    • /
    • v.23 no.6
    • /
    • pp.399-408
    • /
    • 2019
  • Structural health monitoring is important for the safety of lives and asset management. In this study, numerical models were developed for the piezoresistive behavior of smart concrete based on finite element (FE) method. Finite element models were calibrated with experimental data collected from compression test. The compression test was performed on smart concrete cube specimens with 75 mm dimensions. Smart concrete was made of cement CEM II 42.5 R, silica fume, fine and coarse crushed limestone aggregates, brass fibers and plasticizer. During the compression test, electrical resistance change and compressive strain measurements were conducted simultaneously. Smart concrete had a strong linear relationship between strain and electrical resistance change due to its piezoresistive function. The piezoresistivity of the smart concrete was modeled by FE method. Twenty-noded solid brick elements were used to model the smart concrete specimens in the finite element platform of Ansys. The numerical results were determined for strain induced resistivity change. The electrical resistivity of simulated smart concrete decreased with applied strain, as found in experimental investigation. The numerical findings are in good agreement with the experimental results.