• Title/Summary/Keyword: Resistant Genes

Search Result 844, Processing Time 0.028 seconds

Characterization and Antimicrobial Resistance of Vibrio parahaemolyticus Strains Isolated from Seawater of Geum River Estuary Area, West Coast of Korea (금강 하구 해역의 해수에서 분리한 장염비브리오(Vibrio parahaemolyticus) 균의 특성 및 항균제 내성)

  • Lee, Shin-Hye;Kim, Hee-Dai;Park, Kwon-Sam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.6
    • /
    • pp.850-857
    • /
    • 2022
  • Seventy-five Vibrio parahaemolyticus isolates from the surface seawater of the Geum River Estuary area, on the west coast of Korea, were analyzed for the presence of virulence genes and susceptibility to 17 different antimicrobials. All 75 isolates were examined for the presence of two virulence genes (tdh or trh) using polymerase chain reaction; Only one of the isolates possessed the tdh or trh gene. According to the results of disk diffusion susceptibility tests, all of the strains were resistant to penicillin G, 92.0% were resistant to ampicillin, 82.7% were resistant to amoxicillin, 2.7% were resistant to ciprofloxacin, 2.7% were resistant to trimethoprim, 1.3% were resistant to cephalothin, and 1.3% were resistant to erythromycin. However, all of the strains were susceptible to amikacin, cefoxitin, chloramphenicol, gentamycin, kanamycin, nalidixic acid, nitrofurantoin, rifampin, streptomycin, and tetracycline. The average minimum inhibitory concentrations for ampicillin for V. parahaemolyticus was 557.6 ㎍/mL. These results not only provide novel insight into the necessity for seawater sanitation in Geum river estuary area, but they help reduce the risk of contamination of antimicrobial-resistant bacteria.

Microarray-Mediated Transcriptome Analysis of the Tributyltin (TBT)-Resistant Bacterium Pseudomonas aeruginosa 25W in the Presence of TBT

  • Dubey Santosh K.;Tokashiki Tsutomu;Suzuki Satoru
    • Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.200-205
    • /
    • 2006
  • The tributyltin (TBT)-resistant bacterium, Pseudomonas aeruginosa 25W, which was isolated in seawater from the Arabian Sea, was subjected to transcriptome analysis in the presence of high concentrations of TBT. Only slight effects were observed at TBT concentration of $50{\mu}M$, but exposure to $500{\mu}M$ resulted in the upregulation of 6 genes and the downregulation of 75. Among the 75 downregulated genes, 53% (40 out of 75) were of hypothetical function, followed by 14 transcriptional regulation- and translation-associated genes. The results of this study indicated that although the 25W strain was highly resistant to TBT, high concentrations of TBT result in toxic effect on the transcriptional and translational levels. The target genes likely belong to a specific category of transcription- and translation-associated genes rather than to other gene categories.

Expression Analysis of Sweetpotato Sporamin Genes in Response to Infection with the Root-Knot Nematode Meloidogyne incognita

  • Jung-Wook Yang;Yun-Hee Kim
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.163-168
    • /
    • 2023
  • Sweetpotato (Ipomoea batatas [L.]) is a globally important root crop cultivated for food and industrial processes. The crop is susceptible to the root-knot nematode (RKN) Meloidogyne incognita, a major plant-parasitic RKN that reduces the yield and quality of sweetpotato. Previous transcriptomic and proteomic analyses identified several genes that displayed differential expression patterns in susceptible and resistant cultivars in response to M. incognita infection. Among these, several sporamin genes were identified for RKN resilience. Sporamin is a storage protein primarily found in sweetpotato and morning glory (Ipomoea nil). In this study, transcriptional analysis was employed to investigate the role of sporamin genes in the defense response of sweetpotato against RKN infection in three susceptible and three resistant cultivars. Twenty-three sporamin genes were identified in sweetpotato and classified as group A or group B sporamin genes based on comparisons with characterized sweetpotato and Japanese morning glory sporamins. Two group A sporamin genes showed significantly elevated levels of expression in resistant but not in susceptible cultivars. These results suggest that the elevated expression of specific sporamin genes may play a crucial role in protecting sweetpotato roots from RKN infection.

Differential Level of Host Gene Expression Associated with Nucleopolyhedrovirus Infection in Silkworm Races of Bombyx mori

  • Lekha, Govindaraj;Vijayagowri, Esvaran;Sirigineedi, Sasibhushan;Sivaprasad, Vankadara;Ponnuvel, Kangayam M.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.29 no.2
    • /
    • pp.145-152
    • /
    • 2014
  • The variation in the level of immune response related gene expression in silkworm, Bombyx mori following infection with Bombyx mori nucleopolyhedrovirus (BmNPV) was analyzed at different time intervals. The occlusion bodies of BmNPV orally inoculated to the two most divergent silkworm races viz., Sarupat (resistant to BmNPV infection) and CSR2 (susceptible to BmNPV infection) were subjected to oral BmNPV inoculation. The expression profile of gp 41 gene of BmNPV in the Sarupat and CSR2 races revealed that the virus could invade the midguts of both susceptible and resistant races. However, its multiplication was significantly less in the midgut of resistant race, while, in the susceptible race, the viral multiplication reached maximum level within 12 h. These findings indicate that potential host genes are involved in the inhibition of viral multiplication within larval midgut. The immune response genes arylphorin, cathepsin B, gloverin, lebocin, serpin, Hsp 19.9, Hsp 20.1, Hsp 20.4, Hsp 20.8, Hsp 21.4, Hsp 23.7, Hsp 40, Hsp 70, Hsp90 revealed differential level of expression on NPV infection. The gloverin, serpin, Hsp 23.7 and Hsp 40 genes are significantly up-regulated in the resistant race after NPV infection. The early up-regulation of these genes suggests that these genes could play an important role in baculovirus resistance in the silkworm, B. mori.

Detection of Inducible Clindamycin Resistance Genes (ermA, ermB, and ermC) in Staphylococcus aureus and Staphylococcus epidermidis

  • Mazloumi, Mohammad Javad;Akbari, Reza;Yousefi, Saber
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.449-457
    • /
    • 2021
  • The aim of the present study was to survey the frequency of inducible and constitutive phenotypes and inducible cross-resistant genes by regulating the methylation of 23S rRNA (ermA, ermB, and ermC) and macrolide efflux-related msrA gene in Staphylococcus aureus and S. epidermidis strains. A total of 172 bacterial isolates (identified based on standard tests), were examined in this study. Antibiotic susceptibility was determined by the disk diffusion method, and all isolates were evaluated with respect to inducible and constitutive phenotypes. The presence of ermA, ermB, ermC, and msrA genes was investigated by a PCR assay. The constitutive resistance phenotypes showed a higher distribution among the isolates. R phenotype was detected more among S. epidermidis isolates (46.25%). ermB, ermC, and msrA genes were detected more in methicillin-resistant S. aureus (MRSA) and methicillin-resistant S. epidermidis (MRSE) isolates that had R and HD phenotypes (>77% strains). The ermA gene had the lowest frequency among MRSA, MRSE, MSSA, and MSSE strains (<14% isolates). Distribution of inducible resistance genes in MRSA and MRSE strains, and possibly other species, leads to increased constitutive resistance to erythromycin, clindamycin, and other similar antibiotics. Therefore, it can be challenging to treat infections caused by these resistant strains.

In Vitro Transcription Analyses of Autographa californica Nuclear Polyhedrosis Virus Genes

  • Huh, Nam-Eung
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.183-190
    • /
    • 1994
  • Cell-free extracts prepared from cultured insect cells, Spodoptera. frugiperda, were analyzed for activation of early gene transcription of an insect baculovirus, Autographa californica nuclear polyhedrosis virus (AcNPV). The template DNA used for in vitro transcription assays contained promoter sites for the baculovirus genes that have been classified as immediate early ($\alpha$) or early genes. These genes are located in the HindIII-K/Q region of the AcNPV genome. Nuclei isolated from the AcNPV-infected Spodoptera frugiperda cells were also used for in vitro transcription analysis by RNase-mapping the labeled RNA synthesized from in vitro run-on reaction in the isolated nuclei. The genes studied by this technique were p26 and pl0 genes which were classified as delayed early and late gene, respectively. We found that transcription of the genes from the HindIII-K region was accurately initiated and unique in the whole cell extract obtained from uninfected cells, although abundance of the in vitro transcripts was reverse to that of in vivo RNA. With isolated nuclei transcription of the p26 gene was inhibited by $\alpha$-amanitin suggesting that the p26 gene was transcribed by host RNA polymerase II. However, transcription of the pl0 gene in isolated nuclei was not inhibited by $\alpha$-amanitin, but rather stimulated by the inhibitor. We also found that the synthesis of $\alpha$-amanitin-resistant RNA polymerase was begun before 6 hr p.i., the time point at which the onset of viral DNA replication as well as the appearance of a-amanitin-resistant viral transcripts were detected. These studies give us strong evidence to support the previous data that early genes of AcNPV were transcribed by host RNA polymerease III, while transcription of late genes was mediated at least by a novel $\alpha$-amanitin-resistant RNA polymerase.

  • PDF

Biological Response of Resistant Genes to Korean Brown Planthopper, Nilaparvata lugens Stål (벼멸구 저항성 유전자에 대한 국내 벼멸구의 생물적 반응 연구)

  • Choi, Nak Jung;Kim, Gwang-Ho;Baik, Chai-Hun;Lee, Bong-Choon
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.202-208
    • /
    • 2019
  • Brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera: Delphacidae), is one of the most important migratory pests damaging rice in Korea. It invades annually from tropical and subtropical areas via continental air streams. It is necessary to determine the resistance levels of rice varieties in order to control efficiency. The honeydew excretion, development, and reproduction of the migratory BPH were studied by region in a laboratory at $25{\pm}2^{\circ}C$ and $65{\pm}5%\;RH$ and a 16L: 8D photoperiodism conducted on three BPH resistant genes: Bph1, Bph2, and Bph18. The information obtained was reported using the jackknife method, and we created life table statistics accordingly. The feeding amount of Bph1 resistant gene was lower than that of resistant genes. The developmental periods of immature stages ranged from $13.7{\pm}0.10d$ on Bph2 (Namhae, 2015) to $18.5{\pm}1.06d$ on Bph2 (Sacheon, 2016). Reproductive period and female longevity were longest on the non-resistant genes, Bph2 and Bph18 (except 1980s), and the highest fecundity of N. lugens was observed on the two BPH resistant genes. Highest net reproductive rates ($R_0$) were calculated on Bph2 by region. Intrinsic rates of population increase ($r_m$) showed a difference in resistant genes by region. These population parameters showed that migratory regions and biological characteristics of N. lugens vary annually.

Detection of multidrug resistant patterns and associated-genes of Methicillin Rdsistant Staphylococcus aureus(MRSA) isolated from clinical specimens (임상검체에서 분리된 Methicillin Resistant Staphylococcus aureus의 다제내서양상과 내성 관련 유전자의 검색)

  • 김영희;문지영;선윤수;김영부;오양효
    • Journal of Life Science
    • /
    • v.11 no.1
    • /
    • pp.24-34
    • /
    • 2001
  • Methicillin Resistant Staphylococcus aureus (MRSA) was obtained from the clinical specimens at Pusan national university Hospital, Pusan, Korea. The sensitivities against various antibiotics were examined by using disc diffusion test and associated genes such as mecA, mecR1, mecI and femA were detected by polymerase chain reaction. Among Seventy-nine strains of MRSA, 38 strains(48.1%)were sensitive to streptomycin and 32 strains(40.5%) to cefoperazone, while one strain(1.3%) were resistant to vancomycin. In considering the result of this study, 7 strains showed resistance to 9 kinds of different antibiotics, 12 strains were to 8 kinds, 24 strains were to 7,25 strains were to 6, 9 strains were to 5, and 2 strains were to 4 antibiotics. Among 79 strains of MRSA, 67 strains were coagulase positive and 12 were coagulase negative. In the detection of MRSA associated genes by PCR method, mecA, mecR1, mecI, and femA genes were detected in 30 strains(44.8%), 28 strains(41.8%), 23 strains(34.3%) and 15 strains(22.4%), respectively. MecA type that is without femA were found in 21 strains(31.3%), femA type that is without regulator genes were shown in 4 strains(6.0%), while mecA-mecR1-mecI type with regulator genes were shown more to be 17 strains(25.4%). There was little statistical significance between multidrug resistance and MRSA associated genes. Considering these result, it is necessary to include moecular biological studies of related genes to the study drug resistance.

  • PDF

Prevalence and Characterization of Plasmid-Mediated Quinolone Resistance Determinants qnr and aac(6')-Ib-cr in Ciprofloxacin-Resistant Escherichia coli Isolates from Commercial Layer in Korea

  • Seo, Kwang Won;Lee, Young Ju
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1180-1183
    • /
    • 2020
  • The prevalence and characterization of plasmid-mediated quinolone resistance (PMQR) determinants in ciprofloxacin-resistant Escherichia coli isolated from a Korean commercial layer farm were studied. A total of 45 ciprofloxacin-resistant E. coli isolates were recovered and all isolates were multidrug-resistant. Eight isolates have the PMQR genes aac(6')-Ib-cr, qnrS1, and qnrB4, and seven isolates exhibited double amino acid exchange at both gyrA and parC, and have high fluoroquinolone minimum inhibitory concentrations. Five transconjugants demonstrated transferability of PMQR and β-lactamase genes and similar antimicrobial resistance. Because PMQR genes in isolates from commercial layer chickens could enter the food supply and directly affect humans, control of ciprofloxacin resistance is needed.

Incidence of Erythromycin Resistance Genes, erm(B) and mef(A), in Streptococci Isolated from Dental Plaques of Koreans

  • Kim, Yeon-Hee;Lee, Si-Young
    • International Journal of Oral Biology
    • /
    • v.38 no.2
    • /
    • pp.61-65
    • /
    • 2013
  • Erythromycin is a macrolide antibiotic and inhibits bacterial protein synthesis by stimulating the dissociation of the peptidyl-tRNA molecule from the ribosomes during elongation. The use of macrolides has increased dramatically over the last few years and has led to an increase in bacterial resistance to these antibiotics. Bacterial resistance to erythromycin is generally conferred by the ribosome methylation and/or transport (efflux) protein genes. Among the identified erythromycin-resistant genes, erm(B) (erythromycin methylation) and mef(A) (macrolide efflux) are generally detectable in erythromycin-resistant streptococcal species. The distribution of these genes in oral streptococcal isolates has been reported in studies from other countries but has not been previously examined in a Korean study. We here examined by PCR the presence of erm(B) and mef(A) in oral streptococci isolated from Korean dental plaques. Among the 57 erythromycin-resistant strains tested, 64.9% harbored erm(B) whereas 40.4% were positive for mef(A). Eleven isolates had both the erm(B) and mef(A) genes. Twenty six isolates had only erm(B) and 12 isolates had only mef(A). Eight of the 57 strains examined were negative for both genes.