• Title/Summary/Keyword: Resistance to sulfuric acid

Search Result 121, Processing Time 0.029 seconds

Electrochemical Adsorption Properties and Inhibition of Zinc Corrosion by Two Chromones in Sulfuric Acid Solutions

  • Fouda, Abd El-Aziz S.;Nazeer, Ahmed Abdel;Saber, Ahmed
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.2
    • /
    • pp.160-168
    • /
    • 2014
  • The electrochemical behavior and corrosion inhibition of zinc in 0.5 M $H_2SO_4$ in the absence and presence of some chromones has been investigated using weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and electrochemical frequency modulation (EFM) techniques. The presence of these investigated compounds in the corrosive solutions decrease the weight loss, the corrosion current density, and double layer capacitance but increases the charge transfer resistance. Polarization studies were carried out at room temperature, and showed that all the studied compounds act as mixed type inhibitors with a slight predominance of cathodic character. The effect of temperature on corrosion inhibition has been studied and the thermodynamic activation and adsorption parameters were determined and discussed. The adsorption of the investigated compounds on zinc was found to obey Langmuir adsorption isotherm.

The Effect of Solution Treatment on Intergranular Corrosion Resistance of a New Type Ultra Low Carbon Stainless Steel

  • Julin, Wang;Nannan, Ni;Qingling, Yan;Lingli, Liu
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.140-146
    • /
    • 2007
  • In the paper, with corrosion velocity measurement and metallographic observation on specimens after sulfuric acid/ferric sulfate boiling experiment, intergranular corrosion tendency of the new type ultra low carbon stainless steel developed by ourselves which experienced solution treatment at different temperatures was evaluated. A VHX 500 super depth field tridimensional microscope was used to observe corrosion patterns on the sample surfaces. The depth and width of grain boundary corrosion groove were measured by the tridimensional microscope, which indicated that the corrosion degrees of the samples which received solution treatment at different temperatures are quite different. Transgranular corrosion at different degree occurred along with forged glide lines. After comparison it was proved that the stainless steel treated at $1100^{\circ}C$ performs very well against intergranular corrosion.

Fabricability of Reaction-sintered SiC for Ceramic Heat Exchanger Operated in a Severe Environment (원자력 극한환경용 세라믹 열교환기 소재로서 반응소결 SiC 세라믹스 제작성)

  • Jung, Choong-Hwan;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.52-56
    • /
    • 2011
  • Silicon carbide (SiC) is a candidate material for heat exchangers for VHTR (Very High Temperature Gas Cooled Reactor) due to its refractory nature and high thermal conductivity. This research has focused on demonstration of physical properties and mock-up fabrication for the future heat exchange applications. It was found that the SiC-based components can be applied for process heat exchanger (PHE) and intermediate heat exchanger (IHX), which are operated at $400{\sim}1000^{\circ}C$, based on our examination for the following aspects: optimum fabrication technologies (design, machining and bonding) for compact design, thermal conductivity, corrosion resistance in sulfuric acid environment at high temperature, and simulation results on heat transferring and thermal stress distribution of heat exchanger mock-up.

A Study on the Charactristics od Hard Anodizing fikm of Al-Si Pistom Alloys (Al-Si계 피스톤 합금의 경질양극산화피막의 특성에 관한 연구)

  • 문종환;이진형;권혁상
    • Journal of Surface Science and Engineering
    • /
    • v.23 no.1
    • /
    • pp.34-43
    • /
    • 1990
  • Al-Si piston alloys such as AlS10CuMg have been anodized to examine apossibility of forming a hard film aat relatively higher temperatures compard with those in conventional sulfuric acid processes. Three types of electrolytes have been employed in this study ; electrolyte A(15% H2SO4, $0^{\circ}C$), electrolyte B(12% H2SO4, 1% oxalic, $10^{\circ}C$), electrolyte C(tartaric acid 125g/L+oxalic 75g/L+aluminum sulfate 225g/L, $25^{\circ}C$). Hard anodisine process in electrolyte B at a current density of 1.54A/dm2 produced a harder film of VHN 396 at a relatibely low film forming voltage compared with those obtained in other electrolyte at equivalent current density. A liner relationship between hardness and abrasion resistance exists for Al-Si piston alloys. The hardness of anodized film decreasees with increasing silicon content in Al-Si alloys and also with bath temperature. The film hardeness of Na-modified alloy os higher than that of P-modified alloy due to its finer microstructre. The film on the silicon phase in Al-Si alloys is observed to be formed by lateral growth of oxide film nucleated at surroundings.

  • PDF

Durability of concrete using sulfur-modified polymer (개질유황 폴리머를 사용한 콘크리트의 내구성 평가)

  • Hong, Chang Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.5
    • /
    • pp.205-211
    • /
    • 2015
  • Most of the sulfur is obtained from desulfurization of natural gas and crude oil. In Korea, more than 120 tons of sulfur are produced by refinery, and about 50 % of the produced sulfur is used as a raw material for the production of fertilizer and sulfuric acid. Modified sulfur is manufactured from excessive sulfur that could be used to improve concrete properties, and this study evaluated concrete strength and durability that contains modified sulfur. Flexural and compressive strengths of concrete with sulfur modified polymer were comparable to those of OPC concrete with mixing water at similar temperatures, while the strengths increased a little as mixing water temperature increased. It was also confirmed that the resistance to freeze-thaw damage was more dependent on entrained air characteristics obtained by a proper use of air entraining agent than on the use of sulfur modified polymer. When concrete was immersed in 5 % sulfuric acid, the rate of reduction in compressive strength of OPC concrete was less than 1/4 of the strength reduction of concrete with sulfur modified polymer. Also, the resistance of concrete with sulfur modified polymer to scaling due to the use of de-icing salt was evaluated as Class 1, while that of OPC concrete was evaluated as Class 4, as aggregates were exposed. Accordingly, it is believed that sulfur modified polymer could be effectively used for bridge deck concrete since sulfur modified polymer improves the durability of concrete.

Analysis of Electrochemical Corrosion Resistance of Inconel 625 Thermal Spray Coated Fin Tube of Economizer (Inconel 625 용사코팅된 절탄기 핀튜브의 전기화학적 내식성 분석)

  • Park, Il-Cho;Han, Min-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.187-192
    • /
    • 2021
  • In this study, Inconel 625 was used as a thermal spray material to prevent dew point corrosion damage to the economizer tube, and sealing treatment was performed after applying the arc thermal spray coating technology. Various electrochemical experiments were conducted in the 0.5 wt% sulfuric acid solution to analyze the corrosion resistance of the thermal spray coating (TSC) layer. After the anodic polarization experiment, the degree of corrosion damage was determined through a scanning electron microscope and EDS component analysis. When measuring the open circuit potential, the effect of the sealing treatment was confirmed through stable potential formation of the TSC+sealing treatment (TSC+Sealing). As a result of the anodic polarization experiment, the passivation region was confirmed in TSC and TSC+Sealing, and corrosion resistance was improved as no corrosion damage was observed. In addition, the corrosion resistance of TSC+Sealing was the best when analyzing the corrosion potential and corrosion current density calculated by Tafel analysis.

A Study on the Electrometric Measurement of the pH of Acid Rain (산성비의 pH 측정에 대한 연구)

  • Lee, Hwa-Shim;Kim, Myung-Soo
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.1
    • /
    • pp.10-16
    • /
    • 2000
  • In general, acid rain is unbuffered solution with low ionic strength and high resistance. Therefore during the pH measurement of acid rain, error can be occurred due to the liquid junction potential difference between the sample and the standard solution. Actually the average conductivity of rain in Taeduk Science Town during 1998 is 12.8 ${\mu}S/cm$, while that of pH standmd solutions is about 5,980 ${\mu}S/cm$. There is a large difference in ionic strength. To compensate the bias due to residual liquid junction potentials, a quality control standard(QCS) of dilute sulfuric acid, which has the conductivity and pH values simikw to rain, was prepared. The pH of QCS solution was determined using the hydrogen electrode system without liquid junction, and compensation has been made for the bias terms by performing the pH measurements with glass electrode. On the basis of this compensation method, the pH vaiues of rain in Taeduk Science Town during 1998 were measured.

  • PDF

Corrosion and Surface Resistance of Ni-C Composite by Electrodeposition (전해도금에 의한 Ni-C 복합층의 내식성 및 표면 전기저항)

  • Park, Je-Sik;Lee, Sung-Hyung;Jeong, Goo-Jin;Lee, Churl-Kyoung
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.288-294
    • /
    • 2011
  • Simultaneous Ni and C codeposition by electrolysis was investigated with the aim of obtaining better corrosion resistivity and surface conductivity of a metallic bipolar plate for application in fuel cells and redox flow batteries. The carbon content in the Ni-C composite plate fell in a range of 9.2~26.2 at.% as the amount of carbon in the Ni Watt bath and the roughness of the composite were increased. The Ni-C composite with more than 21.6 at.% C content did not show uniformly dispersed carbon. It also displayed micro-sized defects such as cracks and crevices, which result in pitting or crevice corrosion. The corrosion resistance of the Ni-C composite in sulfuric acid is similar with that of pure Ni. Electrochemical test results such as passivation were not satisfactory; however, the Ni-C composite still displayed less than $10^{-4}$ $A/cm^2$ passivation current density. Passivation by an anodizing technique could yield better corrosion resistance in the Ni-C composite, approaching that of pure Ni plating. Surface resistivity of pure Ni after passivation was increased by about 8% compared to pure Ni. On the other hand, the surface resistivity of the Ni-C composite with 13 at.% C content was increased by only 1%. It can be confirmed that the metal plate electrodeposited Ni-C composite can be applied as a bipolar plate for fuel cells and redox flow batteries.

The Study of Corrosion Behavior for Solution and Aging Heat Treated Ti alloy (Ti 합금의 용체화열처리와 시효열처리에 따른 부식거동)

  • Baik, Shin-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.138-144
    • /
    • 2016
  • Titanium is resistant to general corrosion and in sea water because of the passivity layer film on the surface of material, but may be attacked by environments that cause breakdown of the protective oxide layer including hydrochloric, sulfuric and phosphoric acids. In this study, the Ti alloys were solution heat treatment 5hours at $1066^{\circ}C$ and $966^{\circ}C$, and followed by aging heat treated, 1, 4, 8 and 16 hours in $500^{\circ}C$, $600^{\circ}C$ and $650^{\circ}C$ respectively. The heat treated specimens were measured micro Vicker's hardness, and then accomplished electrochemical polarization test for comparing corrosion in 1N sulfuric acid solution. Additionally, micro structures were taken for corrosion tested specimens. The results showed that corrosion resistance was higher in solution heat treated alloy than base and age heat treated metal. Measured corrosion resistants were increased as increasing aging heat treatment time and temperature.

Effect of current density, temperature and electrolyte concentration on Composition of Zn-Ni Electrodeposits (Zn-Ni도금의 합금화에 미치는 전류밀도, 온도와 전해액농도의 영향)

  • Kang, Soo Young
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.307-312
    • /
    • 2017
  • In the industry, galvanizing using the principle of sacrificial anode is used Zn-Ni alloy plating was developed as one of the measures to increase the corrosion resistance rather than pure zinc plating. The alloy plating layer has a corrosion resistance of 4-5 times that of the pure zinc plating layer, so that it is applied to automotive parts requiring high corrosion resistance even though the plating cost is high. The amount of Zn-Ni alloy plating solution is a sulfuric acid bath, a chlorinated bath, an alkali bath, and an ammonia bath. Here, the influence of the electrolytic conditions on the composition of the alloy plating in the chloride bath was investigated. The results are explained by the cathode overvoltage and the diffusion coefficient. In general, as the overvoltage of the cathode increases, the concentration polarization becomes more important than the activation polarization. The concentration polarization is determined by element diffusion in the diffusion layer. That is, as the overvoltage of the cathode increases, the Zn content having a large diffusion coefficient increases.