• Title/Summary/Keyword: Resistance to sulfuric acid

Search Result 121, Processing Time 0.029 seconds

A Study on the Characteristics of Inorganic Polymer Mortar for Concrete Sectional Rehabilitation (콘크리트 단면복구용 무기성 모르타르의 특성에 관한 연구)

  • Hwang, Tae-Ha;Song, Tae-Hyeob;Im, Chil-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.171-177
    • /
    • 2010
  • As concrete structures are exposed to chemical substances, damaged from salt, or progressed to the neutralization, the surface damage of the structures is generated timely fashion, resulting shortened service life. Especially, the sulfate erosion causes rapid surface defects, and the steel skeleton becomes corroded due to the water infiltration, generating stability deterioration of the concrete structure. In this study, the physical characteristics of the acid-resistant mortar with aluminosilicates was investigated in order to resolve problems of the acid resistance, one of the most serious problems of the cement type repair material. As the result of the experiment, the test specimen turned to exhibit almost equivalent physical characteristics with those of concrete sectional repair materials in terms of compressive and bending strengths. As both the cement sectional repair material and the test specimen were immerged in sulfuric acid solution to examine weight changes, the test specimens exhibited only 4% loss of their weights while the cement sectional repair materials reached at the level of 80% or above, proving the excellence acid resistant characteristics of the test specimens. Consequently, the physical characteristics of acid resistant mortar with aluminosilicates were revealed to be superior than those of concrete sectional repair materials. It can be utilized as a sectional repair material where the acidic erosion is anticipated.

INTERGRANULAR CORROSION-RESISTANT STAINLESS STEEL BY GRAIN BOUNDARY ENGINEERING

  • Hiroyuki Kokawa;Masayuki Shimada;Wang, Zhan-Jie;Yutaka S. Sato
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.250-254
    • /
    • 2002
  • Intergranular corrosion of austenitic stainless steels is a conventional and momentous problem during welding and high temperature use. One of the major reasons for such intergranular corrosion is so-called sensitization, i.e., chromium depletion due to chromium carbide precipitation at grain boundaries. Conventional methods for preventing sensitization of austenitic stainless steels include reduction of carbon content in the material, stabilization of carbon atoms as non-chromium carbides by the addition of titanium, niobium or zirconium, local solution-heat-treatment by laser beam, etc. These methods, however, are not without drawbacks. Recent grain boundary structure studies have demonstrated that grain boundary phenomena strongly depend on the crystallographic nature and atomic structure of the grain boundary, and that grain boundaries with coincidence site lattices are immune to intergranular corrosion. The concept of "grain boundary design and control", which involves a desirable grain boundary character distribution, has been developed as grain boundary engineering. The feasibility of grain boundary engineering has been demonstrated mainly by thermomechanical treatments. In the present study, a thermomechanical treatment was tried to improve the resistance to the sensitization by grain boundary engineering. A type 304 austenitic stainless steel was pre-strained and heat-treated, and then sensitized, varying the parameters (pre-strain, temperature, time, etc.) during the thermomechanical treatment. The grain boundary character distribution was examined by orientation imaging microscopy. The intergranular corrosion resistance was evaluated by electrochemical potentiokinetic reactivation and ferric sulfate-sulfuric acid tests. The sensitivity to intergranular corrosion was reduced by the thermomechanical treatment and indicated a minimum at a small roll-reduction. The frequency of coincidence-site-lattice boundaries indicated a maximum at a small strain. The ferric sulfate-sulfuric acid test showed much smaller corrosion rate in the thermomechanically-treated specimen than in the base material. An excellent intergranular corrosion resistance was obtained by a small strain annealing at a relatively low temperature for long time. The optimum parameters created a uniform distribution of a high frequency of coincidence site lattice boundaries in the specimen where corrosive random boundaries were isolated. The results suggest that the thermomechanical treatment can introduce low energy segments in the grain boundary network by annealing twins and can arrest the percolation of intergranular corrosion from the surface.

  • PDF

An Experimental Study on the Durability Properties of Repair Mortar for Sewer Spread with Liquefied Antibiotic (액상 항균제를 도포한 하수시설용 단면복구재의 내구특성에 관한 실험적 연구)

  • Lee Dong-Heck;Jang Jae-bong;Na Chul-Sung;Cho Bong-Suk;Kim Jae-hwan;Kim Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.211-214
    • /
    • 2005
  • Recently, Deterioration of the concrete sewer concrete structures by biochemical corrosion has been issued and a development of the inhibition system of corrosion that has been demanded. The sulfuric acid may react with the hardened cement paste and originate expansive products which can induce swelling and breakless of concrete. Also, a sulphuric acid reacts with calcium hydroxide to from $CaSO_4\;\cdot\;2H_2O$. This reaction accounts for consumption of the calcium hydroxide present in hardened cement paste. In this study, To present from biochemical corrosion of the sewer repair mortar that was spread with liquefied antibiotic and then its experimental properties were experimentally investigated and to estimate the effect of absorbed condition of restorative mortar, the number of coating times and coating contents with antibiotic on the durability properties of restorative mortar spread with antibiotics. Also, testing items such as carbonation depth, choloride ion penetration depth and chemical resistance was tested to estimate the durability properties in third study. In results, the novellus bacillus inhabiting in sewer concrete structures was restrained by antibiotics developed in this study. And carbonation depth, choloride ion penetration depth and chemical resistance of restorative mortar spread with antibiotics was superior to that of plain mortar.

  • PDF

A Testing Method of Indoor Artificial Acceleration for the evaluation of Biochemical Corrosion Properties of Sewage Concrete (하수시설 콘크리트의 생화학적 부식특성 평가를 위한 실내 인공촉진 시험방법)

  • Lee, Eui-Bae;Kim, Do-Su;Khil, Bae-Su;Lee, Seung-Hoon;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.69-72
    • /
    • 2006
  • Recently sewage facilities mainly consisted of concrete structures are being deteriorated seriously by biodeterioration originated from sulfur-oxidizing bacteria. To prevent biochemical corrosion of the sewage concrete, antibiotics which prevent growth of sulfur-oxidizing bacteria were developed. Existing methods to evaluate properties of biochemical corrosion of concrete examine the antimicrobial performance and resistance to sulfuric acid separately, but don't complexly. So, in this study, new method to test properties of biochemical corrosion of concrete complexly is suggested.

  • PDF

Characteristics of Strength and Durability of Hwangto-Concrete according to its Mixing Condition (황토 콘크리트의 배합조건에 따른 강도성상 및 내구성)

  • Hwang, Hey Zoo;Roh, Tae Hak;Kim, Jin Il
    • KIEAE Journal
    • /
    • v.8 no.5
    • /
    • pp.55-60
    • /
    • 2008
  • The purpose of this study is to increase the use of Hwangto and examine the strength according to what it is compounded with. Hwangto-concrete containing Hwanto without cement nor organic chemical products were compared to the traditional cement concrete through some durability experiments. We expect to gain more knowledge on the potentials of Hwangto-concrete as an architectural source. 1) As Hwangto binder amount rises, the value of slump increases too. The reason is that the increase of the quantity of cement causes the increase of the amount of material and the decrease of the amount of aggregate. 2) When the mixed component into Hwangto-concrete remains at 2%, the compress strength is generally dispersed high along the per unit fission, in case the amount of which is at $400(g/m^3)$. The highest compress strength is 39MPa. It means that it can be applied to common structures and we need to conduct a basic property test to ensure the strength and fluidness. 3) Hwangto-concrete is expected to be highly used in the ocean structure and chemical industry because it has better resistance to sulfuric acid and to hydrochloric acid than the cement-concrete has. The result of this study is as follows. It is expected that Hwangto-concrete will be widely applied and further research on its durability and tests for its basic substantial characteristics based on future component added to it.

Performance Relationship of Iron-Based Anolyte According to Organic Compound Additives and Polyoxometalate-Based Catholyte in an Aqueous Redox Flow Battery (유기화합물 첨가제에 따른 철 기반 양극과 polyoxometalate 음극 기반 수계 레독스 흐름 전지의 성능 관계)

  • Seo Jin Lee;Byeong Wan Kwon
    • Applied Chemistry for Engineering
    • /
    • v.35 no.3
    • /
    • pp.255-259
    • /
    • 2024
  • In this study, an aqueous-based redox flow battery (RFB) was constructed using tungstosilic acid (TSA), which is a kind of polyoxometalate, as the negative electrode active material and iron chloride (FeCl3) as the positive electrode active material in a sulfuric acid (H2SO4) supporting electrolyte. As a result of the cell's performance, it exhibited capacity fading and low energy efficiency. To address these issues, malic acid (MA), an organic additive, was introduced to the positive electrode active material and then tested for electrochemical properties and single cell performance. The malic acid in the iron chloride aqueous solution is working as a chelate agent, and two carboxyl groups are effectively coordinated with iron ions. It was found that MA reduced the electrolyte resistance of the positive electrode active material, leading to chemical stabilization and an increase in capacity and energy efficiency.

Effect of Manufacturing Process on Electrochemical Properties of CP-Ti and Ti-6Al-4V Alloys (CP-Ti 및 Ti-6Al-4V 합금의 전기화학적 특성에 미치는 제조공정의 영향)

  • Kim, K.T.;Cho, H.W.;Chang, H.Y.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.20-29
    • /
    • 2018
  • Ti and its alloys show the excellent corrosion resistance to chloride environments, but they show less corrosion resistance in HCl, $H_2SO_4$, NaOH, $H_3PO_4$, and especially HF environments at high temperature and concentration. In this study, we used the commercially pure titanium and Ti-6Al-4V alloy, and evaluated the effect of the manufacturing process on the electrochemical properties. We used commercial products of rolled and forged materials, and made additive manufactured materials by DMT (Directed Metal Tooling) method. We annealed each specimen at $760^{\circ}C$ for one hour and then air cooled. We performed anodic polarization test, AC impedance measurement, and Mott-Schottky plot to evaluate the electrochemical properties. Despite of the difference of its microstructure of CP-Ti and Ti-6Al-4V alloys by the manufacturing process, the anodic polarization behavior was similar in 20% sulfuric acid. However, the addition of 0.1% hydrofluoric acid degraded the electrochemical properties. Among three kinds of the manufacturing process, the electrochemical properties of additive manufactured CP-Ti, and Ti-6Al-4V alloys were the lowest. It is noted that the test materials showed a Warburg impedance in HF acid environments.

High alloyed new stainless steel shielding material for gamma and fast neutron radiation

  • Aygun, Bunyamin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.647-653
    • /
    • 2020
  • Stainless steel is used commonly in nuclear applications for shielding radiation, so in this study, three different types of new stainless steel samples were designed and developed. New stainless steel compound ratios were determined by using Monte Carlo Simulation program Geant 4 code. In the sample production, iron (Fe), nickel (Ni), chromium (Cr), silicium (Si), sulphur (S), carbon (C), molybdenum (Mo), manganese (Mn), wolfram (W), rhenium (Re), titanium (Ti) and vanadium (V), powder materials were used with powder metallurgy method. Total macroscopic cross sections, mean free path and transmission number were calculated for the fast neutron radiation shielding by using (Geant 4) code. In addition to neutron shielding, the gamma absorption parameters such as mass attenuation coefficients (MACs) and half value layer (HVL) were calculated using Win-XCOM software. Sulfuric acid abrasion and compressive strength tests were carried out and all samples showed good resistance to acid wear and pressure force. The neutron equivalent dose was measured using an average 4.5 MeV energy fast neutron source. Results were compared to 316LN type stainless steel, which commonly used in shielding radiation. New stainless steel samples were found to absorb neutron better than 316LN stainless steel at both low and high temperatures.

Mechanical and durability properties of concrete incorporating glass and plastic waste

  • Abdelli, Houssam Eddine;Mokrani, Larbi;Kennouche, Salim;Aguiar, J.L. Barroso de
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.173-181
    • /
    • 2021
  • The main objective of this work is to contribute to the valorization of plastic and glass waste in the improvement of concrete properties. Waste glass after grinding was used as a partial replacement of the cement with a percentage of 15%. The plastic waste was cut and introduced as fibers with 1% by the total volume of the mixture. Mechanical and durability tests were conducted for various mixtures of concrete as compressive and flexural strengths, water absorption, ultrasonic pulse velocity, and acid attack. Also, other in-depth analyses were performed on samples of each variant such as X-ray diffraction (XRD), thermogravimetric analysis (DSC-TGA), and scanning electron microscope (SEM). The results show that the addition of glass powder or plastic fibers or a combination of both in concrete improved in the compression and flexural strengths in the long term. The highest compressive strength was obtained in the mix which combines the two wastes about 26.72% of increase compared to the control concrete. The flexural strength increased in the mixture containing the glass powder. Therefore, the mixture with two wastes exhibits better resistance to aggressive sulfuric acid attack, and incorporating glass powder improves the ultrasonic pulse velocity.

Effects of Acid Concentration and the Addition of Copper/Boron Salts on the Efficacy of Okara-based Wood Preservatives (두부(豆腐)비지 산(酸) 가수분해물(加水分解物)로 조제(調製)한 목재방부제(木材防腐劑)에서 산(酸) 농도(濃度)와 구리/붕소계(硼素系) 염(鹽) 첨가(添加)에 따른 방부능(防腐能)의 영향(影響))

  • Jeong, Han-Seob;Kim, Ho-Yong;Ahn, Sye-Hee;Choi, In-Gyu;Oh, Sei-Chang;Han, Gyu-Seong;Yang, In
    • Resources Recycling
    • /
    • v.18 no.5
    • /
    • pp.52-62
    • /
    • 2009
  • This research was carried out to formulate environmentally friendly wood preservatives with okara and to investigate the effects of the acid concentration used for the hydrolysis of okara and salt type on the decay resistance of the preservatives. Okara-based preservatives were formulated with okara hydrolyzates, which were prepared with 0, 1%, and 2% sulfuric acid at $25^{\circ}C$ for 1 hr, and salts such as copper chloride and/or sodium borate. The preservatives were treated into wood blocks by vacuum-pressure method, and then the treated wood blocks were leached in $70^{\circ}C$ hot water for 72 hrs. The fungal treatments of the leached wood blocks were conducted by brown-rot fungus, Tyromyces palustris, and white-rot fungus, Trametes versicolor, to examine the decay resistance of the preservatives. As the acid concentration used for hydrolysis of okara increased, the treat-ability and decay resistance of the preservatives were improved, which the leachability was decreased. Wood blocks treated with the okara/copper or okara/copper/borax, showed very good decay resistance against T. palustris and T. versicolor. However, wood blocks treated with the okara/borax and okara-free preservative solutions, were observed the fungal decay by T. palustris. The optimal conditions for the preparation of okara-based wood preservatives were formulated with okara hydrolyzed with 1% sulfuric acid, copper chloride and borax.