• 제목/요약/키워드: Resistance to Motion

Search Result 368, Processing Time 0.032 seconds

A Study on the Motion Analysis and Design Optimization of a Ducted Type AUV (Autonomous Underwater Vehicle) by Using CFD (Computational Fluid Dynamics) Analysis (CFD 해석을 이용한 덕트형 자율무인잠수정의 운동해석 및 설계 최적화에 관한 연구)

  • Joung, Tae-Hwan;Sammut, Karl;He, Fangpo;Lee, Seung-Keon
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.48-53
    • /
    • 2009
  • Autonomous Underwater Vehicles (AUV's) provide an important means for collecting detailed scientific information from the ocean depths. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a design method that uses Computational Fluid Dynamics (CFD) to determine the hull resistance of an AUV under development. The CFD results reveal the distribution of the hydrodynamic values (velocity, pressure, etc.) of an AUV with a ducted propeller. This paper also discusses the optimization of the AUV hull profile to reduce the total resistance. This paper demonstrates that shape optimization in a conceptual design is possible by using a commercial CFD package. Optimum design work to minimize the drag force of an AUV was carried out, for a given object function and constraints.

The effect of small forward speed on prediction of wave loads in restricted water depth

  • Guha, Amitava;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.6 no.4
    • /
    • pp.305-324
    • /
    • 2016
  • Wave load prediction at zero forward speed using finite depth Green function is a well-established method regularly used in the offshore and marine industry. The forward speed approximation in deep water condition, although with limitations, is also found to be quite useful for engineering applications. However, analysis of vessels with forward speed in finite water depth still requires efficient computing methods. In this paper, a method for analysis of wave induced forces and corresponding motion on freely floating three-dimensional bodies with low to moderate forward speed is presented. A finite depth Green function is developed and incorporated in a 3D frequency domain potential flow based tool to allow consideration of finite (or shallow) water depth conditions. First order forces and moments and mean second order forces and moments in six degree of freedom are obtained. The effect of hull flare angle in predicting added resistance is incorporated. This implementation provides the unique capability of predicting added resistance in finite water depth with flare angle effect using a Green function approach. The results are validated using a half immersed sphere and S-175 ship. Finally, the effect of finite depth on a tanker with forward speed is presented.

Investigation of rolling resistance and surface damage of rolling elements (구름계의 구름저항 및 표면파손현상의 실험적 고찰)

  • Cha, Kum-Hwan;Kim, Dae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2019-2028
    • /
    • 1997
  • It has been well established that resistant force and wear that occur during rolling motion depend on several factors such as material type, hardness, subsurface microstructure, applied load, and speed. The purpose of this work is to investigate the effect of microstructure and the state of deformed layer on the rolling contact characteristics in dry and lubricated rolling contacts. The results of this work show that the rolling resistance behavior depends on the state of the deformed layer. Also, lubrication can reduce the plastic flow at the surface but may still have an effect on the subsurface strain. The cross-sectional view of the microstructure shows that surface traction has a difinite effect on the morphology of the surface region. That is, significant slip seems to have taken place between the ball than those of the dry rolling case. The surface generation effects were significantly less compared to the case of dry rolling contact.

Experimental studies on the axisymmetric sphere-wall interaction in Newtonian and non-Newtonian fluids

  • Lee, Sang-Wang;Sohn, Sun-Mo;Ryu, Seung-Hee;Kim, Chongyoup;Song, Ki-Won
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.3
    • /
    • pp.141-148
    • /
    • 2001
  • In this research, experimental studies leave been performed on the hydrodynamic interaction between a spherical particle and a plane wall by measuring the force between the particle and wall. To approach the system as a resistance problem, a servo-driving system was set-up by assembling a microstepping motor, a ball screw and a linear motion guide for the particle motion. Glycerin and dilute solution of polyacrylamide in glycerin were used as Newtonian and non-Newtonian fluids, respectively. The polymer solution behaves like a Boger fluid when the concentration is 1,000 ppm or less. The experimental results were compared with the asymptotic solution of Stokes equation. The result shows that fluid inertia plays all important role in the particle-wall interaction in Newtonian fluid. This implies that the motion of two particles in suspension is not reversible even in Newtonian fluid. In non-Newtonian fluid, normal stress difference and viscoelasticity play important roles as expected. In the dilute solution weak shear thinning and the migration of polymer molecules in the inhomogeneous flow field also affect the physic of the problem.

  • PDF

Distance Measure of Vehicle in Lost on The Road (유실된 도로에서 자동차의 떨어진 거리 측정)

  • Shin, Seong-Yoon;Baek, Jeong-Uk;Rhee, Yang-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.337-338
    • /
    • 2010
  • Projectile is said that objects thrown on the ground of the atmosphere. This objects exercises the parabolic motion because of the fact under the influence of gravity in the direction perpendicular and it does not include the horizontal force neglecting air resistance. In this paper, the experiment target is where subsidence occurred by that some of the road is lost to a certain depth using projectile motion. It says how far away and falling from the edge of the road when you have gone over the edge of depressed road that a car was driving at a constant speed.

  • PDF

Design and Fabrication of Flexible Thin Multilayered Planar Coil for Micro Electromagnetic Induction Energy Harvester (초소형 전자기 유도방식 에너지 하베스터용 연성 박막 다적층 평판 코일 설계 및 제작)

  • Park, Hyunchul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.601-606
    • /
    • 2016
  • In this paper, an energy harvester is developed that has advantages regarding piezoelectric noise minimization, mass production, and an easily available environmental energy source, electromagnetic induction, as well as low-frequency bandwidth and high amplitude. A process for fabricating a three-dimensional multilayered planar coil using micro-electro-mechanical systems (MEMS) on a flexible printed circuit board FPCB is introduced. Optimal shape and size were calculated via internal resistance and inductance, and a prototype was fabricated through the MEMS procedure while considering the possibility of mass production. Although the internal resistance matched the designed value, the electromotive force generated did not reach the intended amount. The main reason for the decrease in efficiency was the low area of coil outskirt exposed to the magnetic field while there was relative motion between the magnet and the coil.

Adhesion Estimation and Modeling on Traction Characteristic of Vehicle (차량 견인특성모델링 및 점착력 추정)

  • Byun, Yeun-Sub;Kim, Min-Soo;Mok, Jei-Kyun;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1765_1766
    • /
    • 2009
  • In this paper, we propose the mathematical model for the vehicle system and the observer for adhesion force. To model the dynamic properties of vehicle system, we have considered two fundamental parts. The first part is the motion equations for vehicle based on Newton's second law. The second part is the torque dynamics of the traction motor. These parts are affected by outer conditions such as adhesive coefficient, running resistance and gradient resistance. The each parts are presented by the numerical formula. From two equations, we get the observer on adhesion force. Simulation results show that the proposed observer have the good performance compared with the normal observer.

  • PDF

Analysis of force between linear moving Halbach array and a closed loop (직선운동하는 Halbach 배열 가동자와 폐루프 코일 사이의 작용력 해석)

  • Jang, S.M.;Cha, S.D.;Lee, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.90-92
    • /
    • 2001
  • The lift and drag forces on various magnet moving with a velocity is developed above a closed loop coil. These forces are affect by resistance and inductance of circuit, velocity of magnet. To obtain strong magnetic flux density, the magnet is replaced by Halbach array. This paper presents analysis of force between linear motion Halbach array and a closed loop having the constant resistance and inductance as a various speed.

  • PDF

The motion rule of sand particles under control of the sand transportation engineering

  • Xin, Lin-gui;Cheng, Jian-jun;Chen, Bo-yu;Wang, Rui
    • Wind and Structures
    • /
    • v.27 no.4
    • /
    • pp.213-221
    • /
    • 2018
  • In the desert and Gobi regions with strong wind and large sediment discharge, sand transporting engineering is more effective than sand blocking and sand fixing measures in sand prevention. This study uses the discrete phase model of 3D numerical simulation to study the motion trail, motion state and distribution rule of sand particles with different grain diameters when the included angle between the main shaft of the feather-row lateral transportation sand barrier and the wind direction changes, and conducts a comparison in combination with the wind tunnel test and the flow field rule of common sand barrier. According to the comparison, when wind-sand incoming flow passes through a feather-row sand barrier, sand particles slow down and deposit within the deceleration area under the resistance of the feather-row sand barrier, move along the transportation area formed by the transportation force, and accumulate as a ridge at the tail of the engineering. With increasing wind speed, the eolian erosion of the sand particles to the ground and the feather-row sand barrier is enhanced, and the sand transporting quantity and throw-over quantity of the feather-row sand barrier are both increased. When sand particles with different grain diameters bypass the feather-row sand barrier, the particle size of the infiltrating sands will increase with the included angle between the main shaft of the feather-row sand barrier and the wind direction. The obtained result demonstrates that, at a constant wind speed, the flow field formed is most suitable for the lateral transportation of the wind-drift flow when the included angle between the main shaft of the feather-row sand barrier lateral transportation engineering and the wind speed is less than or equal to $30^{\circ}$.

Study on the Estimation of Autonomous Underwater Vehicle's Maneuverability Using Vertical Planar Motion Mechanism Test in Self-Propelled Condition (자항상태 VPMM 시험을 통한 무인잠수정 조종성능 추정에 관한 연구)

  • Park, Jongyeol;Rhee, Shin Hyung;Lee, Sungsu;Yoon, Hyeon Kyu;Seo, Jeonghwa;Lee, Phil-Yeob;Kim, Ho Sung;Lee, Hansol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.5
    • /
    • pp.287-296
    • /
    • 2020
  • The present study aims to improve the accuracy of the maneuvering simulations based on captive model test results. To derive the hydrodynamic coefficients in a self-propelled condition, a mathematical maneuvering model using a whole vehicle model was established. Captive model tests were carried out using the Vertical Planar Motion Mechanism (VPMM) equipment. A motor controller was used to control the constant propeller revolution rate during pure motion tests. The resistance tests, self-propulsion tests, static drift tests, and VPMM tests were performed in the towing tank of Seoul National University. When the vertical drift angle changes, the gravity load on the sensors were changed. The hydrodynamic forces were deduced by subtracting the gravity load from the measured forces. The hydrodynamic coefficients were calculated using the least-square method. The simulation of the turning circle test was compared with the free-running model test result, and the error of the turning radius was 8.3 % compared to the free-running model test.