• Title/Summary/Keyword: Resistance error

Search Result 432, Processing Time 0.027 seconds

Charteristic Analysis Consdering End-ring of 3Phase Squirrel-cage Induction Motor (3상농형 유도전동기의 엔드링을 고려한 전동기 특성해석)

  • Ha, Kyung-Ho;Kim, Young-Kyoun;Sin, Sang-Yun;Hong, Jung-Pyo;Kim, Gyu-Tak;Im, Tae-Bin
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.158-160
    • /
    • 1998
  • This paper proposed the 2-D Finite Element analysis method taking into end-ring of squirrel cage induction motor. Secondary conductor resistance can be simply replaced new one considering end-ring resistance. In the case of 2-D FEM, the end-ring resistance is hard to condsider. And the results without considering end-ring resistance have an error. To verify the proposed method we compared the analysis results and test ones.

  • PDF

A Resistance Deviation-To-Time Interval Converter Based On Dual-Slope Integration

  • Shang, Zhi-Heng;Chung, Won-Sup;Son, Sang-Hee
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.479-485
    • /
    • 2015
  • A resistance deviation-to-time interval converter based on dual-slope integration using second generation current conveyors (CCIIs) is designed for connecting resistive bridge sensors with a digital system. It consists of a differential integrator using CCIIs, a voltage comparator, and a digital control logic for controlling four analog switches. Experimental results exhibit that a conversion sensitivity amounts to $15.56{\mu}s/{\Omega}$ over the resistance deviation range of $0-200{\Omega}$ and its linearity error is less than ${\pm}0.02%$. Its temperature stability is less than $220ppm/^{\circ}C$ in the temperature range of $-25-85^{\circ}C$. Power dissipation of the converter is 60.2 mW.

Estimation of Nugget Size in Resistance Spot Welding for Galvanized Steel Using an Artificial Neural Networks (아연도금강판의 저항 점용섭에서 인공신경회로망을 이용한 용융부 추정에 관한 연구)

  • 박종우;이정우;최용범;장희석
    • Proceedings of the KWS Conference
    • /
    • 1992.10a
    • /
    • pp.91-95
    • /
    • 1992
  • The resistance spot welding process has been extensively used for joining of sheet metals, which are subject to variation of many process variables. Many qualitive analyses of sampled process variables have been attempted to predict nugget size. In this paper, dynamic resistance and electrode movement signal which is a good indicative of the nugget size was examined by introducing an artificial neural network estimator. An artificial neural feedforward network with back-propagation of error was applied for the estimation of the nugget size. The prediction by the neural network is in good agreement with the actual nugget size for resistance spot welding of galvanized steel. The results are quite promising in that the quantitative estimation of the invisible nugget size can be achieved without conventional destructive testing of welds.

  • PDF

Research on Standards for Protection against Electric Shock in Global Technical Regulations of Fuel Cell Vehicle (연료전지 자동차 세계기술규정의 감전보호기준 연구)

  • HwangBo, Cheon;Lee, Kyu-Myong;You, Kyeong-Jun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.3
    • /
    • pp.167-183
    • /
    • 2010
  • This paper analyzes the backgrounds of the standards for protection against electric shock in Global Technical Regulations (GTR) of Fuel Cell Vehicle (FCV). Targets on research were high voltage criteria, safety current, isolation and grounding resistance, time limitation, energy, adequate clearance, and test procedure. Based on human impedance and effect of current in IEC 60479-1, safety of human was examined. Then, isolation and grounding circuit model of FCV were analyzed theoretically. The results give several suggestions: touch voltage less than 25V, AC energy less than 0.0813J, separation considering middle finger length, grounding resistance less than $0.2\Omega$, maximum AC ground voltage of 1V (rms), and isolation resistance between earth and electrical chassis. In MATLAB/Simulink environment, error characteristics of isolation resistance measurement procedure using internal DC sources were analyzed under variations of internal resistance of voltmeter and isolation resistance.

Resistance Performance Simulation of Simple Ship Hull Using Graph Neural Network (그래프 신경망을 이용한 단순 선박 선형의 저항성능 시뮬레이션)

  • TaeWon, Park;Inseob, Kim;Hoon, Lee;Dong-Woo, Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.6
    • /
    • pp.393-399
    • /
    • 2022
  • During the ship hull design process, resistance performance estimation is generally calculated by simulation using computational fluid dynamics. Since such hull resistance performance simulation requires a lot of time and computation resources, the time taken for simulation is reduced by CPU clusters having more than tens of cores in order to complete the hull design within the required deadline of the ship owner. In this paper, we propose a method for estimating resistance performance of ship hull by simulation using a graph neural network. This method converts the 3D geometric information of the hull mesh and the physical quantity of the surface into a mathematical graph, and is implemented as a deep learning model that predicts the future simulation state from the input state. The method proposed in the resistance performance experiment of simple hull showed an average error of about 3.5 % throughout the simulation.

Optimizing the Cobalt Deposition Condition using the Experiment Design (실험계획법을 이용한 대구경용 코발트 박막의 스퍼터 조건 최적화)

  • Seong, Hwee-Cheong;Song, Oh-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.6
    • /
    • pp.224-230
    • /
    • 2002
  • The statistical experiment method is employed to optimize the deposition condition of Co film with DC magnetron sputtering process. The statistical treatment results showed the significance value below 0.05, low RMS error and R-sq value close to 1, which implied that our experiment and design were very reliable. We found that the sheet resistance decreased to -1.83Ω/$\square$ with the deposition temperature, increased to 11.17Ω/$\square$ with the deposition pressure, and decreased into -0.65Ω/$\square$ with the DC power. We also confirmed that the sheet resistance uniformity was mainly influenced by the deposition temperature as it decreased -4.04% at the temperature range of 25$\^{C}$∼147$\^{C}$. Finally, we report that the optimum condition of Co film using our statistical method of design of experiment is the deposition temperature of 25$\^{C}$, the deposition pressure of 12mTorr, and the DC power of 1500W.

Digital Microflow Controllers Using Fluidic Digital-to-Analog Converters with Binary-Weighted Flow Resistor Network (이진가중형 유체 디지털-아날로그 변환기를 이용한 고정도 미소유량 조절기)

  • Yoon, Sang-Hee;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1923-1930
    • /
    • 2004
  • This paper presents digital microflow controllers(DMFC), where a fluidic digital-to-analog converter(DAC) is used to achieve high-linearity, fine-level flow control for applications to precision biomedical dosing systems. The fluidic DAC, composed of binary-weighted flow resistance, controls the flow-rate based on the ratio of the flow resistance to achieve high-precision flow-rate control. The binary-weighted flow resistance has been specified by a serial or a parallel connection of an identical flow resistor to improve the linearity of the flow-rate control, thereby making the flow-resistance ratio insensitive to the size uncertainty in flow resistors due to micromachining errors. We have designed and fabricated three different types of 4-digit DMFC: Prototype S and P are composed of the serial and the parallel combinations of an identical flow resistor, while Prototype V is based on the width-varied flow resistors. In the experimental study, we perform a static test for DMFC at the forward and backward flow conditions as well as a dynamic tests at pulsating flow conditions. The fabricated DMFC shows the nonlinearity of 5.0% and the flow-rate levels of 16(2$^{N}$) for the digital control of 4(N) valves. Among the 4-digit DMFC fabricated with micromachining errors, Prototypes S and P show 27.2% and 27.6% of the flow-rate deviation measured from Prototype V, respectively; thus verifying that Prototypes S and P are less sensitive to the micromachining error than Prototype V.V.

Temperature Compensation on the Cone Tip Resistance by Using FBG Temperature Transducer (FBG센서를 이용한 콘 선단저항력의 온도영향 보상)

  • Kim, Rae-Hyun;Lee, Jong-Sub;An, Shin-Whan;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.31-40
    • /
    • 2009
  • As the measurement of strain-gage type cone penetrometer is influenced by the temperature change during penetration, the temperature is a factor producing an error of the cone tip resistance. In this study, the 0.5 mm diameter temperature transducer and 7 mm diameter micro cone penetrometer are manufactured by using FBG sensors to evaluate the effect of temperature on the cone tip resistance. Design concepts include the cone configuration, sensor installation and the temperature compensation process. The test shows that the tip resistance measured by strain gauge is affected by the temperature change. The error of the tip resistance increases with an increase in temperature change, while the temperature effect on the tip resistance of FBG cone is effectively compensated by using FBG temperature transducer. Temperature compensated tip resistance of the strain gauge cone shows the good matched profile with FBG cone which performs real-time temperature compensation during penetration. This study demonstrates that the temperature compensation by using FBG sensor is an effective method to produce the more reliable cone tip resistance.

A New Measurement Method of the Ground Resistance Using a Low-pass Filter in Energized Substations (지역필터를 이용한 수변전실 접지저항의 새로운 측정방법)

  • Lee, Bok-Hui;Eom, Ju-Hong;Lee, Seung-Chil;Kim, Seong-Won;An, Chang-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.8
    • /
    • pp.387-393
    • /
    • 2001
  • This paper describes an advanced measuring method and precise evaluation of the ground resistance for the grounding system of energized substations and power equipments. A grounding system of substations consists of all interconnected grounding connections of grounded conductors, neutral ground wires, underground conductors of distribution lines, cable shields, grounding terminals of equipments, and etc. It is very difficult to measure the accurate ground resistance of the grounding terminals of equipments, and etc. It is very difficult to measure the accurate ground resistance of the grounding system of high voltage energized substations because of harmonic components caused by switched power supplies or overloads. The conventional fall-of-potential method may be subject to big error if stray ground currents and potentials are present. In this work, to improve the precision in measurements of the ground resistance by eliminating the effects of harmonic components and stray currents and potentials, the investigations of the ground resistance measurement by using a low pass filter in a model energized grounding system were conducted. The accuracy of ground resistance mesurements was evaluated as a function of the ratio of the test signal to noise (S/N). The errors due to the proposed ground resistance measurement method were decreased with increasing S/N and were less than 5[%] as S/N is 10. The proposed ground resistance measurement method appears to be considerably more accurate than the conventional fall-of -potential method. It is allows cancellation of the parasitic resistance of energized grounding systems, to employ the measurement method that allows cancellation of the parasitic effects due to other circulating ground currents and ground potential rises in practical situations.

  • PDF

The Effects of Resistance Exercise and Balance Exercise on Proprioception and WOMAC Index of Patients with Degenerative Knee Osteoarthritis

  • Yun, Young-Dae;Shin, Hee-Joon;Kim, Sung-Joong;Lim, Sang-Wan;Choi, Suk-Ju;Seo, Dong-Kyu;Kim, Hong-Rae;Kim, Jung-Hee;Lee, Joo-Sang;Kim, Mi-Jung;Kim, Soon-Hee
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.1 no.2
    • /
    • pp.169-175
    • /
    • 2010
  • The purpose of this study was to analyze and compare the effect of resistance exercise and balance exercise on proprioception and WOMAC index of patients with degenerative knee osteoarthritis. A total of 40 subjects participated in this study. The subjects were diagnosed with degenerative knee osteoarthritis and all were more than 60 years old. They were divided into three groups. Group I(n=8) was trained with resistance exercise, Group II(n=6) was trained with balance exercise and Group III(n=6) was trained with range of motion as a control. The results of this study were as follows. It was significantly indicated that the resistance exercise group and balance exercise group elicited error-reduction on proprioception goal-angle (p<.05). There was a statistically significant difference on proprioception between resistance exercise group and control(range of motion) group. There was a statistically significant reduction on WOMAC index between resistance exercise group and balance exercise group (p<.05) and on the WOMAC index between resistance exercise group and range of motion group(p<.05). In conclusion, resistance exercise and balance exercise are effective on degenerative knee osteoarthritis and resistance exercise is the most effective for improving proprioception and WOMAC index. More research on the intervention according to the degree of degenerative knee osteoarthritis is needed.

  • PDF