• Title/Summary/Keyword: Resistance effect

Search Result 6,754, Processing Time 0.031 seconds

A Study of Power Output Characteristics for the Magnesium Metal Fuel Cell (마그네슘 금속연료전지의 출력특성에 관한 연구)

  • Kim, Yong-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.212-217
    • /
    • 2014
  • The electric power output characteristics of magnesium fuel cell were investigated with regard to internal resistance. A equivalent circuit with the series-connected three internal resistance was introduced to analyze of the response to change of power. The power output analysis was employed in order to investigate the effect of internal resistances for the electrolyte concentration, air electrode area, Mg electrode area and distance between the electrodes. It was confirmed that internal resistance is generated by the electrolyte, air electrode and metal electrode, then those Internal resistances had a significant effect on the power output decrease. The power output was a maximum when the load resistance maches the internal resistance of the magnesium fuel cell. The fuel efficiency was only 50% at maximum power output. Higher fuel efficiency was achieved when the load resistance is greater than the internal resistance.

A Study on Effect of Technological Innovation Activities on Innovation Performance in Firms: Focused on the Moderating Effect of Innovation Resistance and Performance (기업의 기술혁신 활동이 혁신성과에 미치는 영향연구: 혁신저항의 매개적 효과를 중심으로)

  • Park, Jugyeong;Lee, Seolbin
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.12 no.5
    • /
    • pp.89-99
    • /
    • 2017
  • Although the technological innovation activities have depended on corporate, organizational and personal capabilities and activities, innovation resistance to practice was not actively considered in previous studies. This study is intended to the effects of corporate technology innovation capabilities and activities on intra-organizational innovation resistance and performance by compensating the limit of previous studies. To achieve this, a survey was empirically carried out to 293 domestic IT and BT companies. First, technological innovation competencies had a positive effect on technological innovation resistance, adopting hypothesis 1. Second, technological innovation activities had no positive effect on technological innovation resistance, rejecting hypothesis 2. Third, technological innovation resistance had a positive effect on technological innovation performance, adopting hypothesis 3. Fourth, technological innovation resistance was positively mediated in the relationship between technological innovation competencies and technological innovation performance, adopting hypothesis 4. Fifth, technological innovation resistance was not positively mediated in the relationship between technological innovation activities and technological innovation performance, rejecting hypothesis 5. Overall, the higher technological innovation competencies had a significant effect on technological innovation resistance. Consequently, technological innovation resistance can improve or reduce technological innovation competencies and performance depending on the level of resistance.

  • PDF

A study on the effect of process parameters on the corrosion resistance of ion plated Tin films with Ti and Ni interlayers. (이온플레팅시 공정조건이 Ti 및 Ni 중간층을 갖는층을 갖는 TiN 박막의 내식성에 미치는 영향에 관한 연구)

  • 하희성;이종민;이인행;이정중
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.1
    • /
    • pp.33-43
    • /
    • 1997
  • The effects of process parameters substrate such as substrate current and substrate temperature on the corrosion resistance of ion plated TiN film were investigated. TiN fims were deposited on speed steel on which Ti or Ni hed been previously evaporated. Dense TiN films could be obtained under higher substrate current(1A) and substrate temperature($500^{\circ}C$), whereas TiN films deposited with lower substances current(0.5A) and substrate temperature($300^{\circ}C$) showed porous structure. The corrosion resistances of high speed steel was considerably increased when dense TiN films had been formed on it. The effect of Ti and Ni interlayer on the increase of the corrosion resistance was also significant with dense TiN films, while there was little effect of interlayer on the corrosion resistance when TiN films were porous. the effect of interlayer on the corrosion resistance was more outstanding with Ti then with Ni, because Ti reacts more easily with oxygen to form an oxide layer, and it also shows higher resistance against chlorine containing corrosion media.

  • PDF

Study of the Resistance Test and Wall Blockage Correction Method for the Submerged Body in LCT (대형 캐비테이션터널에서 몰수체 저항시험 및 위벽효과 수정 기법 연구)

  • Ahn, Jong-Woo;Seol, Han-Shin;Park, Young-Ha;Kim, Ki-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.3
    • /
    • pp.133-139
    • /
    • 2020
  • In order to study the resistance test technique for the submerged body in Large Cavitation Tunnel (LCT), DARPA Suboff, submarine model publicly available was manufactured. DTRC released the resistance test data of DARPA Suboff conducted at ship speeds up to 18.0 knots in high-speed towing tank in 1990. As LCT is considered restricted waterways with walls, the resistance test results must be corrected with three wall blockage effects called buoyancy effect, solid blockage effect and wake blockage effect. Before correction, the resistance of LCT was 16~20 % higher than that of DTRC. After correction, the resistance and the resistance coefficients were compared with those of DTRC. The corrected resistance of LCT shows good agreement with that of DTRC. The residual resistance coefficient shows the difference according to the calculation method of buoyancy and frictional resistance coefficient. This paper suggests the best way for the calculation of residual resistance coefficient, On the basis of the present study, it is thought that the operating conditions for the propeller cavitation and noise tests can be drawn through LCT tests.

The Effect of Mineral Admixtures' Type on the Chloride Penetration Resistance of Concrete (콘크리트의 염화물 침투저항성에 미치는 무기질 혼화재 종류의 영향)

  • Kim, Young-Jin;Kim, Dong-Seok;Yu, Jae-Kang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.802-805
    • /
    • 2004
  • This study was performed to investigate the effect of mineral admixture' type and replacement ratios on the chloride penetration resistance of concrete which was immersed in the artificial chloride solution. The chloride penetration resistance was evaluated by penetration depth and chloride diffusion coefficient. As a result, all of the mineral admixtures were effective on the chloride penetration resistance of concrete compared to ordinary portland cement only.

  • PDF

Estimation of Fatigue Strength in Resistance Spot Weldment of the Vehicle Body (차체 저항 점 용접부 피로수명 예측)

  • 손광재;양영수;조성규;장상균
    • Journal of Welding and Joining
    • /
    • v.20 no.2
    • /
    • pp.59-64
    • /
    • 2002
  • When the vehicle travels in an actual road, resistance spot weldments of the vehicle structure are exposed to complex loading state. Since the fatigue strength in resistance spot weldment of vehicle body can be determined by effect of residual stresses and loading state of driving, estimating actual loading state and considering residual stress effect are needed. In this study, Fatigue stress-fatigue life relation concerned residual stress effect was obtained by thermo elastic plastic finite element analysis. And applied loading in resistance spot weldments of vehicle body was calculated by dynamic analysis. Presumption of fatigue life was performed using proposed method

Effect of pH and Nisin on Heat Resistance of Listeria monocytogenes Scott A (Listeria monocytogenes의 열저항성에 미치는 pH와 Nisin의 효과)

  • 이신호;조현순
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.3
    • /
    • pp.200-206
    • /
    • 1993
  • The effect of pH (7, 5 and 4) and nisin (100 and 200IU/ml) on heat resistance of Listeria monocytogenes Scott A were determined using citrate-phosphate buffer system. Heat resistance of vegetative and starved cell was decreased as pH value was lower at 65 and 72C. Starved L. monocytogenes was more resistant than vegetative cell at both temperature. Heat resistance of vegetative and starved cell was decreased significantly with treatment of nisin. The effect of nisin was increased significantly at low pH(5, 4). Adherent microcolony was more resistant to heat and nisin than planktonic cell. Contamination of L. monocytogenes may be prevent by using nisin in food and food processing environments.

  • PDF

Nonlinear analysis of finite beam resting on Winkler foundation with consideration of beam-soil interface resistance effect

  • Zhang, L.;Zhao, M.H.;Xiao, Y.;Ma, B.H.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.5
    • /
    • pp.573-592
    • /
    • 2011
  • Comprehensive and accurate analysis of a finite foundation beam is a challenging engineering problem and an important subject in foundation design. One of the limitation of the traditional Winkler elastic foundation model is that the model neglects the effect of the interface resistance between the beam and the underneath foundation soil. By taking the beam-soil interface resistance into account, a deformation governing differential equation for a finite beam resting on the Winkler elastic foundation is developed. The coupling effect between vertical and horizontal displacements is also considered in the presented method. Using Galerkin method, semi-analytical solutions for vertical and horizontal displacements, axial force, shear force and bending moment of the beam under symmetric loads are presented. The influences of the interface resistance on the behavior of foundation beam are also investigated.

Numerical analysis of simply supported two-way reinforced concrete slabs under fire

  • Wenjun Wang;Binhui Jiang;Fa-xing Ding;Zhiwu Yu
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.469-484
    • /
    • 2023
  • The response mechanism of simply supported two-way reinforced concrete (RC) slabs under fire was numerically studied from the view of stress redistribution using the finite element software ABAQUS. Results show that: (1) Simply supported two-way RC slabs undergo intense stress redistribution, and their responses show four stages, namely elastic, elastic-plastic, plastic and tensile membrane stages. There is no cracking in the fire area of the slabs until the tensile membrane stage. (2) The inverted arch effect and tensile membrane effect improve the fire resistance of the two-way slabs. When the deflection is L/20, the slab is in an inverted arch effect state, and the slab still has a good deflection reserve. The deformation rate of the slab in the tensile membrane stage is smaller than that in the elastic-plastic and plastic stages. (3) Fire resistance of square slabs is better than that of rectangular slabs. Besides, increasing the reinforcement ratio or slab thickness improves the fire resistance of the slabs. However, an increase of cover thickness has little effect on the fire resistance of two-way slabs. (4) Compared with one-way slabs, the time for two-way slabs to enter the plastic and tensile cracking stage is postponed, and the deformation rate in the plastic and tensile cracking stage is also slowed down. (5) The simply supported two-way RC slabs can satisfy with the requirements of a class I fire resistance rating of 90 min without additional fire protection.

Evaluation of AC Resistance in Litz Wire Planar Spiral Coils for Wireless Power Transfer

  • Wang, Xiaona;Sun, Pan;Deng, Qijun;Wang, Wengbin
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1268-1277
    • /
    • 2018
  • A relatively high operating frequency is required for efficient wireless power transfer (WPT). However, the alternating current (AC) resistance of coils increases sharply with operating frequency, which possibly degrades overall efficiency. Hence, the evaluation of coil AC resistance is critical in selecting operating frequency to achieve good efficiency. For a Litz wire coil, AC resistance is attributed to the magnetic field, which leads to the skin effect, the proximity effect, and the corresponding conductive resistance and inductive resistance in the coil. A numerical calculation method based on the Biot-Savart law is proposed to calculate magnetic field strength over strands in Litz wire planar spiral coils to evaluate their AC resistance. An optimized frequency can be found to achieve the maximum efficiency of a WPT system based on the predicted resistance. Sample coils are manufactured to verify the resistance analysis method. A prototype WPT system is set up to conduct the experiments. The experiments show that the proposed method can accurately predict the AC resistance of Litz wire planar spiral coils and the optimized operating frequency for maximum efficiency.