• Title/Summary/Keyword: Resistance change Distribution

Search Result 124, Processing Time 0.024 seconds

Effect of Cu-Additions on the Hand-Over Layer of an Aluminum Alloy - Hardening for the Top Ring Groove of Automotive Piston by the Plasma Transferred Arc Welding Process -

  • Moon, J.H.;Seo, C.J.;Hwang, S.H.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.58-62
    • /
    • 2001
  • The surface of AC8A Ah alloy was modified by adding the Cu powder using a Plasma Transferred Arc (PTA) welding process. Under the optimum fabricating conditions, the modified surface of AC8A Ah alloy was observed to possess the sound microstructure with a minimum porosity. Hardness and wear resistance properties of the as-fabricated alloy were compared with those of the 76 heat-treated one. In case of the as-fabricated alloy, the hardness of the modified layer was twice that of the matrix region. Although significant increase in the hardness of the matrix region was observed after T6 heat treatment, the hardness of the modified layer was not observed to change. The wear resistance of the modified layer was significantly increased compared to that of the matrix region. The microstructure of a weld zone and the matrix region were investigated using the optical microscope, scanning electron microscope (SEM), electron probe microanalysis (EPMA), and transmission electron microscope (TEM). The primary and eutectic silicon in the weld zone were finer and more curved than in the matrix region, while some precipitates has had been found therein. According to the TEM observation, the predominant precipitate present in the weld zone was the $\theta$'phase, which is precipitated during cooling by rapid solidification in PTA welding process. Improvement of hardness and wear properties in the weld zone in the as-fabricated condition can be explained based on the presence of $\theta$’precipitates and fine primary and eutectic silicon distribution.

  • PDF

AES Analysis of Au, Au/Cr, Au/Ni/Cr and Au/Pd/Cr Thin Films by the Change of Substrate Temperature and Annealing Temperature (기판온도와 열처리온도의 변화에 따른 Au/Cr, Au/Ni/Cr 및 Au/Pd/Cr 다층박막의 AES 분석)

  • Yoo, Kwang Soo;Jung, Hyung Jin
    • Analytical Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.217-223
    • /
    • 1993
  • Thin films of the Au/Cr, Au/Ni/Cr and Au/Pd/Cr systems were deposited on alumina substrates at ambient temperature and $250^{\circ}C$ in a high-vacuum resistance heating evaporator and annealed at $300^{\circ}C$, $450^{\circ}C$ and $600^{\circ}C$ for 1 hour in air, respectively. The film thicknesses of Au, Ni(or pd), and Cr were $1000{\AA}$, $300{\AA}$, and $50{\AA}$, respectively. The substrate temperature during deposition and the post-deposition annealing temperature affected the sheet resistance of thin-films due to the inter-diffusion of each layer. As a result of Auger depth profile analysis, in the Au/Cr system Cr already diffused out to Au surface during deposition at the substrate temperature of $250^{\circ}C$ and Au distribution changed after heat treatment. In the Au/Ni/Cr and Au/Pd/Cr systems, diffusion phenomena of Ni and Pd were found and especially Ni (approximately 45 at.%) diffused out to Au surface and oxidized.

  • PDF

Study on the Physical Properties of Cellular Rubber Products (국산(國産) 스폰지류(類)의 물성연구(物性硏究))

  • Paik, Nam-Chul;Ryu, Woon-Young;Choi, Sei-Young
    • Elastomers and Composites
    • /
    • v.15 no.3
    • /
    • pp.147-154
    • /
    • 1980
  • The cellular rubber products for industrial purpose have been applied in many fields such as auto-motive parts, ship-building, machinery, sports goods, diving suit or interior housings etc. The purpose of this dissertation is to study the physical properties of celluar rubber products particulary for those elastomers such as EPDM, CR and NBR with heat resistance property, weather proofness, and oil resistance characteristics respectively, aiming at improving their quality, and renovating the manufacturing know-how which is beyond our technical power at the present time in Korea. In order to meet this requirement an ideal recipe is being shown for the three elastomers, and also a practical recipe which is easily available in terms of compounding ingredients in domestic market has set up as shown in Table 1. for the investigation of vulcanization characteristics by means of Rheometer. The optimum Mooney viscosity of compounded rubber was found to be approximately $ML_{1+4}(100^{\circ}C)$ $30\sim45$. Excess mustication makes a dispersion of ingredients worse, consequently it causes deformation of shapes and heterogenous cell distribution. In other words the articles are rejected because of its insufficient workmanship. The results of physical properties of the products are indicated in Table 3. It has shown that the quality meet requirement when tested in accordance with ASTM D572, 573 and D 395. The test results o CR/IR blends in terms of hardness, volume change by blowing, tensile strength and elongation have been shown.

  • PDF

Comparison of fracture strength, surface hardness, and color stain of conventionally fabricated, 3D printed, and CAD-CAM milled interim prosthodontic materials after thermocycling

  • Mesut Yildirim;Filiz Aykent;Mahmut Sertac Ozdogan
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.2
    • /
    • pp.115-125
    • /
    • 2024
  • PURPOSE. The purpose of this in vitro study was to investigate the fracture resistance, surface hardness, and color stain of 3D printed, CAD-CAM milled, and conventional interim materials. MATERIALS AND METHODS. A total of 80 specimens were fabricated from auto polymerizing polymethyl methacrylate (PMMA), bis-acryl composite resin, CAD-CAM polymethyl methacrylate resin (milled), and 3D printed composite resin (printed) (n = 20). Forty of them were crown-shaped, on which fracture strength test was performed (n = 10). The others were disc-shaped specimens (10 mm × 2 mm) and divided into two groups for surface hardness and color stainability tests before and after thermal cycling in coffee solution (n = 10). Color parameters were measured with a spectrophotometer before and after each storage period, and color differences (CIEDE2000 [DE00]) were calculated. The distribution of variables was measured with the Kolmogorov Smirnov test, and one-way analysis of variance (ANOVA), Tukey HSD, Kruskal-Wallis, Mann-Whitney U tests were used in the analysis of quantitative independent data. Paired sample t-test was used in the analysis of dependent quantitative data (P < .05). RESULTS. The highest crown fracture resistance values were determined for the 3D printed composite resin (P < .05), and the lowest were observed in the bis-acryl composite resin (P < .05). Before and after thermal cycling, increase in mean hardness values were observed only in 3D printed composite resin (P < .05) and the highest ΔE00 value were observed in PMMA resin for all materials (P < .05). CONCLUSION. 3D printing and CAD-CAM milled interim materials showed better fracture strength. After the coffee thermal cycle, the highest surface hardness value was again found in 3D printing and CAD-CAM milled interim samples and the color change of the bis-acryl resin-based samples and the additive production technique was higher than the PMMA resin and CAD-CAM milled resin samples.

Temperature distribution behaviors of GFRP honeycomb hollow section sandwich panels

  • Kong, B.;Cai, C.S.;Pan, F.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.623-641
    • /
    • 2013
  • The fiber-reinforced polymer (FRP) composite panel, with the benefits of light weight, high strength, good corrosion resistance, and long-term durability, has been considered as one of the prosperous alternatives for structural retrofits and replacements. Although with these advantages, a further application of FRPs in bridge engineering may be restricted, and that is partly due to some unsatisfied thermal performance observed in recent studies. In this regard, Kansas Department of Transportation (DOT) conducted a field monitoring program on a bridge with glass FRP (GFRP) honeycomb hollow section sandwich panels. The temperatures of the panel surfaces and ambient air were measured from December 2002 to July 2004. In this paper, the temperature distributing behaviors of the panels are firstly demonstrated and discussed based on the field measurements. Then, a numerical modeling procedure of temperature fields is developed and verified. This model is capable of predicting the temperature distributions with the local environmental conditions and material's thermal properties. Finally, a parametric study is employed to examine the sensitivities of several temperature influencing factors, including the hollow section configurations, environmental conditions, and material properties.

A Study on the Three Dimensional Statistical Turbulent Flow Characteristics Around a Small-Sized Axial Fan for Refrigerator (냉장고용 소형 축류홴의 통계학적 3차원 난류유동 특성에 관한 연구)

  • Kim, Jang-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.819-828
    • /
    • 2001
  • The operating point of a small-sized axial fan is strongly dependent upon the system resistance. Therefore, the turbulent flow characteristics around a small-sized axial fan may change significantly according to the operating point. This study represents three-dimensional turbulent flow characteristics around a small-sized axial fan measured at the ideal design point $\phi$=0.25, which is equivalent to the maximum total efficiency point, by using three dimensional fiber-optic type LDA system. This LDA system is composed of a 5 W Argon-ion laser, two optics in back-scatter mode, three BSAs, a PC, and a three-dimensional automatic traversing system. A kind of paraffin fluid is used to supply particles by means of fog generator. Mean velocity profiles downstream of a small-sized axial fan along the radial distance show that the streamwise and the tangential components exist in a predominant manner, while the radial component has a small scale distribution and shows the inflection which its flow direction is inward or outward. Moreover, the turbulent intensity profiles show that the radial component exists the most greatly among turbulent energies.

Cure Cycle for Thick Glass/Polyester Composites (두꺼운 유리섬유/폴리에스터 복합재료를 위한 경화 사이클)

  • 김형근;오제훈;이대길
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.33-42
    • /
    • 2001
  • The cure kinetic equation fur 52-glass/polyester prepreg composites was established through DSC (differential scanning calorimetry). Using the established kinetic equation, the temperature distribution of the thick composite was calculated considering the change of heat transfer resistance due to resin impregnation of bleeder plies used. In order to reduce the overheat during cure of thick glass fiber composites, the cure cycle was modified by introducing the cooling and reheating steps. Then the thick glass composites were cured both by the conventional cycle without any cooling or reheating step and the modified cure cycle. The mechanical properties of the thick composites cured by the both cycles were tested by the short beam shear test and the Barcol hardness test, and then their results were compared.

  • PDF

Hexavalent Chromium Reduction by Bacteria from Tannery Effluent

  • Batool, Rida;Yrjala, Kim;Hasnain, Shahida
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.547-554
    • /
    • 2012
  • Chromium is generated from several industrial processes. It occurs in different oxidation states, but Cr(III) and Cr(VI) are the most common ones. Cr(VI) is a toxic, soluble environmental contaminant. Some bacteria are able to reduce hexavalent chromium to the insoluble and less toxic Cr(III), and thus chromate bioremediation is of considerable interest. An indigenous chromium-reducing bacterial strain, Rb-2, isolated from a tannery water sample, was identified as Ochrobactrum intermedium, on the basis of 16S rRNA gene sequencing. The influence of factors like temperature of incubation, initial concentration of Cr, mobility of bacteria, and different carbon sources were studied to test the ability of the bacterium to reduce Cr(VI) under variable environmental conditions. The ability of the bacterial strain to reduce hexavalent chromium in artificial and industrial sewage water was evaluated. It was observed that the mechanism of resistance to metal was not due to the change in the permeability barrier of the cell membrane, and the enzyme activity was found to be inductive. Intracellular reduction of Cr(VI) was proven by reductase assay using cell-free extract. Scanning electron microscopy revealed chromium precipitates on bacterial cell surfaces, and transmission electron microscopy showed the outer as well as inner distribution of Cr(VI). This bacterial strain can be useful for Cr(VI) detoxification under a wide range of environmental conditions.

Study of Dye Encapsulated Microcapsule Polymerization Using Styrene Monomer (스타이렌 모노머를 이용한 색소 담지 마이크로캡슐의 제조)

  • Kim, Ji Yeon;Woo, Ji Yun;Min, Mun Hong;Yoon, Seok Han;Yeo, Ji Ae;Ghim, Han Do;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.28 no.3
    • /
    • pp.164-174
    • /
    • 2016
  • In this study, dye-encapsulated microcapsules were produced by emulsion polymerization using styrene monomer. The study showed that the average size of microcapsules were $2{\sim}5{\mu}m$ in normal distribution. These microcapsules induced pale yellow(A12) and reddish yellow(B24) color by thermochromic fluoran yellow(dye A) and red(dye B). These microcapsules were changed to dark yellow(A12) and scarlet(B24) color depending on temperature change. The weight of microcapsules decreased by 7% to 11% during the heating ranges from $320^{\circ}C$ to $350^{\circ}C$ implying that the styrene microcapsules had thermal stability upto $300^{\circ}C$.

A Simulation Study of Impedance Plethysmography for Diagnosing Deep Vein Thrombosis (Deep Vein Thrombosis 진단을 위한 Impedance Plethysmography의 시뮬레이션 연구)

  • Lee, Jeon;Lee, Kyoung-Joung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.10
    • /
    • pp.494-501
    • /
    • 2001
  • In this study, the effects of vascular parameter changes and electrodes on VOP measurement based on IPG were simulated mathematically. For the evaluation of the effects of hemodynamic changes on VOP, a mathematical model, which consists of cardiovascular system model and venous occlusion model, was developed and the model solution representing the blood flow and pressure in measuring point was found by 2nd order Runge-Kutta method. And, with sensitivity coefficients obtained from finite element solution of electric field in measuring point, the effects of electrode system on measurement were evaluated. As increasing the resistance, the venous capacitance was not changed but the venous outflows were decreased and the decreased compliance reduced the venous capacitance. And, for several configurations of round electrodes and band electrodes, the sensitivity coefficients were computed using the electric field distribution along deep vein. In conclusion, the proposed mathematical cardiovascular model could be applied to the simulation study on the effects of hemodynamic parameters on DVT diagnosis with IPG. And, also the sensitivity coefficients could provide effective electrode configuration for exact measurement of VOP.

  • PDF