• 제목/요약/키워드: Resin-based composite

Search Result 311, Processing Time 0.021 seconds

The Effects of Polyurethane Resin on the Water Stability of HAC/PVA Based MDF Cement Composites (Polyurethane 첨가에 의한 HAC/PVA계 MDF 시멘트 복합재료의 수분안정성 영향)

  • 박춘근;김태진;김병권;엄태형;노준석;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1037-1044
    • /
    • 1997
  • Mechanical properties and water stability of HAC/PVA based MDF cement composite were investigated using polyurethane(PU) resin, silane coupling agent and various PVA. The results were as follows ; The flexural strength of MDF cement composite increased as increasing with PVA content. Low-viscosity PVA developed higher flexural strength than high-viscosity PVA under a drying curing condition. But the strength of water immersed specimen decreased. Water stability of MDF cement improved as increasing with content of PU. Consequently, water stability of polyurethane 7% added MDF cement was about 2 times higher than that of the controlled specimen. Furthermore, the strength and water stability of diamine group based silane couling agent in using MDF cement increased and improved dramatically.

  • PDF

Mechanical properties of ABS resin reinforced with recycled CFRP

  • Ogi, Keiji;Nishikawa, Takashi;Okano, Yasutaka;Taketa, Ichiro
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.181-194
    • /
    • 2007
  • This paper presents the mechanical properties of a composite consisting of acrylonitrile-butadiene-styrene (ABS) resin mixed with carbon fiber reinforced plastics (CFRP) pieces (CFRP/ABS). CFRP pieces made by crushing CFRP wastes were utilized in this material. Nine kinds of CFRP/ABS compounds with different weight fraction and size of CFRP pieces were prepared. Firstly, tensile and flexural tests were performed for the specimens with various CFRP content. Next, fracture surfaces of the specimens were microscopically observed to investigate fracture behavior and fiber/resin interface. Finally, the tensile modulus and strength were discussed based on the macromechanical model. It is found that the elastic modulus increases linearly with increasing CFRP content while the strength changes nonlinearly. Microscopic observation revealed that most carbon fibers are separated individually and dispersed homogeneously in ABS resin. Epoxy resin particles originally from CFRP are dispersed in ABS resin and seem to be in good contact with surrounding resin. The modulus and strength can be expressed using a macromechanical model taking account of fiber orientation, length and interfacial bonding in short fiber composites.

Comparison of surface characterization according to surface treatment of composite resin inlay (복합레진 인레이의 표면처리방법에 따른 표면특성 비교)

  • Lee, Myung-Jin;Choi, Yu-Ri;Kang, Min-Kyung
    • Journal of Korean society of Dental Hygiene
    • /
    • v.19 no.2
    • /
    • pp.307-315
    • /
    • 2019
  • Objectives: The aim of this study was to investigate the characterization of composite resin inlay surface with silane and non-thermal atmospheric pressure plasma treatment. Methods: Composite resin inlay was used as a specimen, which was treated by sandblasting + silane and sandblasting + plasma. The untreated specimens were assigned to the control group. Specimens were analyzed for surface roughness, color change, and chemical composition. Statistical analyses were performed using one-way ANOVA test (p<0.05). Results: The present findings showed that the roughness and color changes of the plasma-treated surface were significantly lower than those of the silane-treated surface. In addition, a change in the chemical composition was observed on the plasma-treated surface. Conclusions: Based on the results, non-thermal atmospheric pressure plasma could be a potential tool for the cementation of composite resin inlay.

Evaluation of surface gloss of composite resins (복합레진의 표면 광택에 대한 평가)

  • Ji-Eun Byun
    • Journal of Korean Academy of Dental Administration
    • /
    • v.11 no.1
    • /
    • pp.38-46
    • /
    • 2023
  • Composite resins, commonly used in clinical practice, have been developed to improve aesthetics to obtain smooth surfaces. Although the restored composite resin has a smooth surface, it gradually becomes rough over time. Therefore, this study measured glossiness to evaluate the surface of various composite resins and attempted to evaluate the maintenance of glossiness of composite resins by observing surfaces that change to roughness. Specimens were produced using resin used in clinical practice: Gradia direct anterior (GA), Tetric N-Ceram (TN), Ceram.X Sphere TEC one (CX), Filtek Z350XT (FT), Estelite sigma quick (ES). After creating a smooth surface with slide glass, five locations were randomly selected to measure surface gloss, and the average was the representative value of the specimen. Roughness was applied to the specimen under water pouring at the same speed and pressure using SiC paper #2400, 1200, and 400. The gloss unit of different SiC papers was measured. To evaluate the gloss unit and gloss retention between composite resins, one-way analysis of variance and Tukey multiple comparisons test were used. As a result of the study, there was a difference in gloss unit of specimens produced under the same conditions. Although the degree differed depending on the composite resin, there was also a difference in gloss retention. Based on the findings, composite resins show differences in gloss due to their different characteristics. Ceram.X Sphere TEC one (CX) showing the lowest gloss retention and Estelite sigma quick (ES) showing the highest.

Fabrication of in-situ Formed Namo-Composite Using Polymer Precursor : I. Adsorption Behavior of Polymer Followed $SiO_2$ Surface formation onto Silicon Nitride Surface (폴리머 Precursor를 이용한 in-situ 나노 복합체의 제조 : I. 질화규소 표면에서의 $SiO_2$ 피막형성에 따른 폴리머의 흡착거동)

  • 정연길;백운규
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.3
    • /
    • pp.280-287
    • /
    • 2000
  • Adsorption behavior and amount of phenolic resin followed silica (SiO2) formation onto silicon nitride(Si3N4) surface were investigated using electrokinetic sonic amplitude (ESA) technique and with UV spectrometer, to fabricate Si3N4/SiC nano-composite based on reaction between SiO2 formed and phenolic resin absorbed onto Si3N4 particle. The amount of SiO2 formed and carbon from phenolic resin absorbed onto Si3N4 surface were calculated quantitatively to adjust the reaction between SiO2 and phenolic resin, resulting in no residual SiO2 and carbon. As a result, pre-heated tempeature for optimized reaction was below 25$0^{\circ}C$, in which there was no residual SiO2 and carbon.

  • PDF

Polymerization Shrinkage Distribution of a Dental Composite during Dental Restoration Observed by Digital Image Correlation Method (디지털 이미지 상관법을 이용한 치과용 복합레진의 수복 시 중합수축분포 관찰)

  • Park, Jung-Hoon;Choi, Nak-Sam
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.393-398
    • /
    • 2017
  • The shrinkage distribution of a dental composite (Clearfil AP-X, Kuraray, Japan) used for dental restoration was observed using a digital image correlation method. In order to analyze the shrinkage distribution formed during and after light irradiation, digital images were taken with different photographing conditions for each period. Optimal photographing conditions during LED irradiation were obtained through a preliminary experiment in which the exposure time was applied from 0.15 ms to 0.55 ms in 0.05 ms intervals. The DIC analysis results showed that the strain was non-uniform. For the initial 20 s of light irradiation the composite resin shrank to the level of 50~60% of the final curing shrinkage. Such large shrinkage amount of the composite resin lump affected the tensile stress concentration near the adhesive region between the composite resin and the substrate.

CHANGES OF COMPRESSIVE STRENGTH AND MICROHARDNESS OF COMPOSITE RESIN, GIOMER AND COMPOMER AFTER THERMOCYCLING TREATMENT (복합레진, 자이오머, 컴포머의 열순환 후 압축강도와 미세경도의 변화)

  • Yoon, Mi;Kim, Jong-Soo;Yoo, Seung-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.37 no.4
    • /
    • pp.438-444
    • /
    • 2010
  • Giomer is a recently developed light-cured resin-based material. This study compared compressive strength and microhardness of composite resin, giomer and compomer after 5000 times of thermocycling at $5^{\circ}C$ and $55^{\circ}C$. The following results were obtained. 1. Composite resin resulted in the highest compressive strengths both before and after thermocycling, followed by giomer and compomer. There were statistically significant differences between composite resin and giomer/compomer (p<0.05), but no statistically significant differences between giomer and compomer. 2. Both before and after thermocycling, microhardness values appeared in the order of composite resin, giomer and compomer with statistically significant differences in microhardness of composite resin, giomer and compomer (p<0.05). 3. After thermocycling, microhardness of composite resin, giomer and compomer decreased with a statistically significant difference (p<0.05). In conclusion, giomer demonstrates higher microhardness than compomer, but lower compressive strength and microhardness than composite resin. In addition, the decrease in microhardness and compressive strength after thermocycling proves the necessity for a thorough understanding in mechanical properties of restoration materials prior to their clinical application.

Comparison of Shear Bond Strength in Novel Calcium Silicate-Based Materials to Composite Resin

  • Wonkyu Shin;Hyuntae Kim;Ji-Soo Song;Teo Jeon Shin;Young-Jae Kim;Jung-Wook Kim;Ki-Taeg Jang;Hong-Keun Hyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.50 no.4
    • /
    • pp.443-451
    • /
    • 2023
  • The purpose of this study was to evaluate whether the newly introduced calcium silicate-based materials with fast-setting properties could be appropriately used as basement materials in indirect pulp treatment (IPT). This was performed by quantifying the durability of adhesion between the material and composite resin, measured by the shear bond strength (SBS). Five calcium silicate-based materials, TheraCal LC® (TLC), TheraCal PT® (TPT), TheraBase® (TB), Well-RootTM PT (WPT), and Endocem® MTA (EMTA), as well as two glass ionomer-based materials, Fuji II and Fuji II LC, were included. Specimens containing these materials were manufactured and bonded to composite resin with a universal adhesive applied in self-etch mode. The SBS values and failure modes were recorded, and the mean SBSs of the materials were compared. Both TPT and TB exhibited SBS values that were similar to TLC, while both WPT and EMTA appeared to have statistically lower SBS values. Mixed failure was commonly observed in TLC and TPT, while all WPT and EMTA samples showed cohesive failure. In comparison with TLC and TPT, more samples with cohesive failure were observed in TB, implying that this material forms a stronger bond with composite resin. Together with the ability of TB to chemically bind to dentin due to its 10-methacryloyloxydecyl dihydrogen phosphate component, TB seems to be a promising material for IPT within the limitations of this in vitro study.

Survival rates against fracture of endodontically treated posterior teeth restored with full-coverage crowns or resin composite restorations: a systematic review

  • Suksaphar, Warattama;Banomyong, Danuchit;Jirathanyanatt, Titalee;Ngoenwiwatkul, Yaowaluk
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.3
    • /
    • pp.157-167
    • /
    • 2017
  • This systematic review aims to summarize the current clinical studies that investigated survival rates against fracture of endodontically treated posterior teeth restored with crowns or resin composite restorations. Literature search were performed using keywords. Publications from 1980 to 2016 were searched in PubMed, ScienceDirect, ISI Web of SCIENCE, MEDLINE, and SCOPUS. Included studies were selected based on inclusion and exclusion criteria. Three clinical studies were included: 1 randomized controlled trial and 1 prospective and 1 retrospective cohort studies. Pooled survival rates ranged from 94%-100% and 91.9%-100% for crowns and resin composite, respectively. The majority of teeth had no more than 3 surface loss of tooth structure. The studies included were heterogeneous, and were not appropriate for further meta-analysis. Current evidence suggested that the survival rates against the fracture of endodontically treated posterior teeth restored with crowns or resin composites were not significantly different in the teeth with minimum to moderate loss of tooth structure.

The Effect of the Fiber Volume Fraction Non-uniformity and Resin Rich Layer on the Rib Stiffness Behavior of Composite Lattice Structures (섬유체적비 불균일 및 수지응집층이 복합재 격자 구조체 리브의 강성도 거동에 미치는 영향)

  • Kang, Min-Song;Jeon, Min-Hyeok;Kim, In-Gul;Kim, Mun-Guk;Go, Eun-Su;Lee, Sang-Woo
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.161-170
    • /
    • 2018
  • Cylindrical composite lattice structures are manufactured by filament winding process. The fiber volume fraction non-uniformity and resin rich layers that can occur in the manufacturing process affect the stiffness and strength of the structure. Through the cross-section examination of the hoop and helical ribs, which are major elements of the composite lattice structure, we observed the fiber volume fraction non-uniformity and resin rich layers. Based on the results of the cross-section examination, the stiffness of the ribs was analyzed through the experimental and theoretical approaches. The results show that the fiber volume fraction non-uniformity and resin rich layers have an obvious influence on the rib stiffness of composite lattice structure.