• Title/Summary/Keyword: Resin wettability

Search Result 43, Processing Time 0.024 seconds

Wettability Evaluation of Resin on the Glass Fabric (유리섬유직물에 대한 수지의 젖음성 평가)

  • Han, Seung-Wook;Choi, Nak-Sam;Lee, Min-Soo;Ahn, Hung-Kun
    • Composites Research
    • /
    • v.24 no.2
    • /
    • pp.30-37
    • /
    • 2011
  • Analysis of wettability between epoxy resin and glass fabric was studied. The mixing ratios of epoxy resin and anhydride hardener were varied as 1:0.5, l:l and l:1.2. Catalyst content was fixed as 0.1wt% of the mixed resin. A curing analysis by differential scanning calorimeter(DSC) showed a possible impregnation of the mixed resin at the room temperature. An effective contact angle of the mixed epoxy resin drop onto the glass fabric being preset on a flat glass plate was measured as a function of time. The wet area of the epoxy resin drop was also measured. Behaviors of the contact angle, the droplet height, the neat wet area and the coefficient of wettability were used to evaluate the wettability of the epoxy resin onto the glass fabric. It was concluded that the equivalent ratio of 1: 1.2 was the most suitable for the wettability.

Wettability of denture relining materials under water storage over time

  • Jin, Na-Young;Lee, Ho-Rim;Lee, Hee-Su;Pae, Ahran
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • STATEMENT OF PROBLEM. Poor wettability of denture relining materials may lead to retention problems and patient discomfort. PURPOSE. Purpose of this study is to compare and evaluate wettability of nine denture relining materials using contact angle measurements under air and water storage over time. MATERIAL AND METHODS. Nine denture relining materials were investigated in this study. Two heat-curing polymethyl-methacrylate(PMMA) denture base materials: Vertex RS, Lang, one self-curing polyethyl-methacrylate(PEMA) chairside reline resin: Rebase II, six silicone relining materials: Mucopren soft, Mucosoft, $Mollosil^{{R}}$ plus, Sofreliner Touch, GC $Reline^{TM}$ Ultrasoft, Silagum automix comfort were used in this experiment. Contact angles were measured using high-resolution drop shape analysis system(DSA 10-MK2, KRUESS, Germany) under three conditions(in air after setting, 1 hour water storage, and 24 hours water storage). Nine materials were classified into three groups according to material composition(Group 1: PMMA, Group 2: PEMA, Group 3: Silicone). Mean values of contact angles were compared using independent samples t-test and one-way ANOVA, followed by a Scheffe's post hoc analysis($\alpha$=0.01). RESULTS. Contact angles of materials tested after air and water storage increased in the following order: Group 1(PMMA), Group 2(PEMA), Group 3(Silicone). Heat-cured acrylic denture base resins had more wettability than silicone relining materials. Lang had the highest wettability after 24 hours of water storage. Silicone relining materials had lower wettability due to their hydrophobicity. Wettability of all denture relining materials, except Rebase II and $Mollosil^{{R}}$ plus, increased after 24 hours of water storage. CONCLUSIONS. Conventional heat-cured resin showed the highest wettability, therefore, it can be suggested that heat-cured acrylic resin is material of choice for denture relining materials.

Adhesion of biofilm, surface characteristics, and mechanical properties of antimicrobial denture base resin

  • Ana Beatriz Vilela Teixeira;Mariana Lima da Costa Valente;Joao Pedro Nunes Sessa;Bruna Gubitoso;Marco Antonio Schiavon;Andrea Candido dos Reis
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.2
    • /
    • pp.80-92
    • /
    • 2023
  • PURPOSE. This study incorporated the nanomaterial, nanostructured silver vanadate decorated with silver nanoparticles (AgVO3), into heat-cured resin (HT) at concentrations of 2.5%, 5%, and 10% and compared the adhesion of multispecies biofilms, surface characteristics, and mechanical properties with conventional heat-cured (HT 0%) and printed resins. MATERIALS AND METHODS. AgVO3 was incorporated in mass into HT powder. A denture base resin was used to obtain printed samples. Adhesion of a multispecies biofilm of Candida albicans, Candida glabrata, and Streptococcus mutans was evaluated by colony-forming units per milliliter (CFU/mL) and metabolic activity. Wettability, roughness, and scanning electron microscopy (SEM) were used to assess the physical characteristics of the surface. The mechanical properties of flexural strength and elastic modulus were tested. RESULTS. HT 10%-AgVO3 showed efficacy against S. mutans; however, it favored C. albicans CFU/mL (P < .05). The printed resin showed a higher metabolically active biofilm than HT 0% (P < .05). There was no difference in wettability or roughness between groups (P > .05). Irregularities on the printed resin surface and pores in HT 5%-AgVO3 were observed by SEM. HT 0% showed the highest flexural strength, and the resins incorporated with AgVO3 had the highest elastic modulus (P < .05). CONCLUSION. The incorporation of 10% AgVO3 into heat-cured resin provided antimicrobial activity against S. mutans in a multispecies biofilm did not affect the roughness or wettability but reduced flexural strength and increased elastic modulus. Printed resin showed higher irregularity, an active biofilm, and lower flexural strength and elastic modulus than heat-cured resin.

Effect of various intraoral repair systems on the shear bond strength of composite resin to zirconia

  • Han, In-Hae;Kang, Dong-Wan;Chung, Chae-Heon;Choe, Han-Cheol;Son, Mee-Kyoung
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.248-255
    • /
    • 2013
  • PURPOSE. This study compared the effect of three intraoral repair systems on the bond strength between composite resin and zirconia core. MATERIALS AND METHODS. Thirty zirconia specimens were divided into three groups according to the repair method: Group I-CoJet$^{TM}$ Repair System (3M ESPE) [chairside silica coating with $30{\mu}m$ $SiO_2$ + silanization + adhesive]; Group II-Ceramic Repair System (Ivoclar Vivadent) [etching with 37% phosphoric acid + Zirconia primer + adhesive]; Group III-Signum Zirconia Bond (Heraus) [Signum Zirconia Bond I + Signum Zirconia Bond II]. Composite resin was polymerized on each conditioned specimen. The shear bond strength was tested using a universal testing machine, and fracture sites were examined with FE-SEM. Surface morphology and wettability after surface treatments were examined additionally. The data of bond strengths were statistically analyzed with one-way ANOVA and Tamhane post hoc test (${\alpha}$=.05). RESULTS. Increased surface roughness and the highest wettability value were observed in the CoJet sand treated specimens. The specimens treated with 37% phosphoric acid and Signum Zirconia Bond I did not show any improvement of surface irregularity, and the lowest wettability value were found in 37% phosphoric acid treated specimens. There was no significant difference in the bond strengths between Group I ($7.80{\pm}0.76$ MPa) and III ($8.98{\pm}1.39$ MPa). Group II ($3.21{\pm}0.78$ MPa) showed a significant difference from other groups (P<.05). CONCLUSION. The use of Intraoral silica coating system and the application of Signum Zirconia Bond are effective for increasing the bond strength of composite resin to zirconia.

Evaluation of Wettability and Interfacial Property of Glass Fiber Reinforced Composite with Different Glass Fiber Conditions via Capillary Effect (Capillary 특성을 활용한 섬유 조건에 따른 유리섬유강화 복합재료의 함침성 및 계면강도 평가)

  • Kim, Jong-Hyun;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.305-310
    • /
    • 2021
  • Mechanical properties of fiber reinforced composites were affected to fiber volume fractions (FVF) and interfacial property by sizing agent conditions. An optimum interface can relieve stress concentration by transferring the mechanical stress from the matrix resin to the reinforcements effectively, and thus can result in the performance of the composites. The interfacial properties and wettability between the epoxy resin and glass fiber (GF) were evaluated for different sizing agent conditions and FVFs. The surface energies of epoxy resin and different sizing agent treated GFs were calculated using dynamic and static contact angle measurements. The work of adhesion, Wa was calculated by using surface energies of epoxy matrix and GFs. The wettability was evaluated via the GF tow capillary test. The interfacial shear strength (IFSS) was evaluated by microdroplet pull-out test. Finally, the optimized GFRP manufacturing conditions could be obtained by using wettability and interfacial property.

The Resin Impregnation with Silane Coupling on Graphite (흑연의 실란커플링에 의한 수지함침)

  • 조광연;김경자;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.10
    • /
    • pp.1021-1026
    • /
    • 2003
  • Resin impregnation of carbon materials was affected by surface of carbon materials. The surface of carbon materials with coupling treatment improved comparability and wettability with resin, and that increased impregnation efficiency and properties of carbon materials. As a results of FT-IR, The silanol was coated on carbon surface with one layer. Coupling treatment of carbon materials increased impregnation efficiency, which improved porosity, mechanical strength, density and friction behavior.

The effect of repeated surface treatment of zirconia on its bond strength to resin cement

  • Maciel, Lucas Campagnaro;Amaral, Marina;Queiroz, Daher Antonio;Baroudi, Kusai;Silva-Concilio, Lais Regiane
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.5
    • /
    • pp.291-298
    • /
    • 2020
  • PURPOSE. The aim of this study is to evaluate the influence of repeated surface treatments on wettability and surface roughness for zirconia surface and bond strength of zirconia-based ceramics to resin cement. MATERIALS AND METHODS. Seventy blocks (10 × 10 × 3 mm) of zirconia-based ceramics were fabricated and divided into two groups according to the surface treatments: (A) 110 ㎛ Al2O3 airborne-particle abrasion and (R) 110 ㎛ silica modified Al2O3 airborne-particle abrasion. At stage 2, each group was subdivided into 5 groups according to the surface retreatments: (a) 110 ㎛ Al2O3 airborne-particle abrasion, (r) 110 ㎛ silica modified Al2O3 airborne-particle abrasion, (D) diamond bur, (Da) diamond bur + 110 ㎛ Al2O3 airborne-particle abrasion, and (Dr) diamond bur + 110 ㎛ silica modified Al2O3 airborne-particle abrasion. Cylinders of self-adhesive resin cement were cemented onto each treated ceramic surface and subjected to micro-shear bond strength test. Additional specimens were prepared for roughness and wettability analyses. The data were subjected to t-test and One-way ANOVA followed by Tukey's post hoc test (α=.05). RESULTS. At stage 1, group R presented higher bond strength values than group A (P=.000). There was a statistically significant increase of bond strength at stage 2 for group A (P=.003). The diamond bur influenced the surface roughness, increasing the values (P=.023). Group R provided better wettability. Regardless of the applied surface treatment, most of failures were adhesive. CONCLUSION. The combination of application and reapplication of Rocatec Plus showed the best results of bond strength. Surface retreatment and recementation might be an indicated clinical strategy.

A STUDY ON THE CONTACT ANGLE AND WETTABILITY OF THE DENTAL STONES (수종 치과용 석고의 접촉각 및 젖음성에 관한 비교 연구)

  • Cho Lee-Ra;Chung Kyung-Ho;Kim Kyoung-Nam
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.1
    • /
    • pp.61-70
    • /
    • 2003
  • The purpose of this study was to investigate the contact angles and wettability of conventional dental stones and improved dental stones and newly developed dental stones on several impression materials. Materials included in this study were several dental stones and newly developed dental stone ; 2 type III stones (Snow Rock, New Diastone), 6 type IV stones(Crystal Rock, Vel Mix, Fuji Rock, Tuff Rock, Resin Rock and newly developed dental stone) and 1 type V stone (Die Keen). Contact angles on the impression materials were measured with contact angle measuring device. Ten specimens for each material, total 180 specimens were made on void entrapment model. The two impression materials (Handae, GC) were used to produce 9 groups of die stone casts form void entrapment model. Voids in the stone casts were counted under a stereoscopic microscope. The grad for the reproduction ability of each materials on the void entrapment model was calculated from the casts by one examiner. From the experiment, the following results were obtained : 1. The newly developed stones showed smallest contact angle. Type III dental stone had larger contact angles than type IV and V stones. Contact angle was much affected by the impression materials. 2. Resin containing die materials such as Tuff Rock and Resin Rock had smallest void number than any other groups. 3. In comparing reproduction parameters, Tuff Rock and Resin Rock presented superior results, while Vel Mix showed lowest reproduction ability.

Efficacy of various cleansing techniques on dentin wettability and its influence on shear bond strength of a resin luting agent

  • Munirathinam, Dilipkumar;Mohanaj, Dhivya;Beganam, Mohammed
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.3
    • /
    • pp.139-145
    • /
    • 2012
  • PURPOSE. To evaluate the shear bond strength of resin luting agent to dentin surfaces cleansed with different agents like pumice, ultrasonic scaler with chlorhexidine gluconate, EDTA and the influence of these cleansing methods on wetting properties of the dentin by Axisymmetric drop Shape Analysis - Contact Diameter technique (ADSA-CD). MATERIALS AND METHODS. Forty coronal portions of human third molar were prepared until dentin was exposed. Specimens were divided into two groups: Group A and Group B. Provisional restorations made with autopolymerizing resin were luted to dentin surface with zinc oxide eugenol in Group A and with freegenol cement in Group B. All specimens were stored in distilled water at room temperature for 24 hrs and provisional cements were mechanically removed with explorer and rinsed with water and cleansed using various methods (Control-air-water spray, Pumice prophylaxis, Ultrasonic scaler with 0.2% Chlorhexidine gluconate, 17% EDTA). Contact angle measurements were performed to assess wettability of various cleansing agents using the ADSA-CD technique. Bond strength of a resin luting agent bonded to the cleansed surface was assessed using Instron testing machine and the mode of failure noted. SEM was done to assess the surface cleanliness. Data were statistically analyzed by one-way analysis of variance with Tukey HSD tests (${\alpha}$=.05). RESULTS. Specimens treated with EDTA showed the highest shear bond strength and the lowest contact angle for both groups. SEM showed that EDTA was the most effective solution to remove the smear layer. Also, mode of failure seen was predominantly cohesive for both EDTA and pumice prophylaxis. CONCLUSION. EDTA was the most effective dentin cleansing agent among the compared groups.

Effects of Fiber Surface Modification on the Flow Characteristics and Wettability in the Resin Transfer Molding Process (섬유의 표면개질이 수지이동 성형공정에서의 유동특성 및 젖음성에 미치는 영향)

  • 김세현;이건웅;이종훈;김성우;이기준
    • The Korean Journal of Rheology
    • /
    • v.11 no.1
    • /
    • pp.34-43
    • /
    • 1999
  • Flow-induced voids during resin impregnation and poor fiber wetting have known to be highly detrimental to the performance of composite parts manufactured by resin transfer molding(RTM) process. In this study, in order to overcome these serious problems encountered in RTM, the effects of surface modification by using silane coupling agent as a surface modifier on the flow characteristics, the wetting between resin and fiber, and void content were investigated. For the experiments of microscopic flow visualization and curing in a beam mold, glass fiber mats having plain weaving structure and epoxy resin were used. Modifying the fiber surface was found to result in a significant decrease of dynamic contact angle between resin and fiber and increase of wicking rate. Therefore, it was confirmed that the surface modification employed in this study could improve the wettability of reinforcing fibers as well as micro flow behavior. In addition, It was revealed that high temperature and low penetration rate of the resin are more favorable processing conditions to reduce the dynamic contact angle. However, surface modified fiber mat was found to have lower permeability than the unmodified one, which may be explained in terms of the decrease of contact time between resin and fiber owing to improvement of wetting. It was also exhibited that surface modification had a significant influence on void formation in RTM process, resulting in a decrease of overall void content due to the improvement of wetting in cured composite parts.

  • PDF