• 제목/요약/키워드: Resin thickness

검색결과 577건 처리시간 0.031초

도재인레이 하방에서 광중합형 복합레진과 이중중합형 복합레진시멘트의 미세경도와 중합률에 관한 연구 (THE MICROHARDNESS AND THE DEGREE OF CONVERSION OF LIGHT CURED COMPOSITE RESIN AND DUAL CURED RESIN CEMENTS UNDER PORCELAIN INLAY)

  • 김승수;조성식;엄정문
    • Restorative Dentistry and Endodontics
    • /
    • 제25권1호
    • /
    • pp.17-40
    • /
    • 2000
  • Resin cements are used for cementing indirect esthetic restorations such as resin or porcelain inlays. Because of its limitations in curing of purely light cured resin cements due to attenuation of the curing light by intervening materials, dual cured resin cements are recommended for cementing restorations. The physical properties of resin cements are greatly influenced by the extent to which a resin cures and the degree of cure is an important factor in the success of the inlay. The purpose of this study was to evaluate the influence of porcelain thickness and exposure time on the polymerization of resin cements by measuring the microhardness and the degree of conversion, to investigate the nature of the correlation between two methods mentioned above, and to determine the exposure time needed to harden resin cements through various thickness of porcelain. The degree of resin cure was evaluated by the measurements of microhardness [Vickers Hardness Number(VHN)] and degree of conversion(DC), as determined by Fourier Transform Infrared Spectroscopy(FTIR) on one light cured composite resin [Z-100(Z)] and three dual cured resin cements [Duo cement(D), 3M Resin cement(R), and Dual cement(DA)] which were cured under porcelain discs thickness of 0mm, 1mm, 2mm, 3mm with light exposure time of 40sec, 80sec, 120sec, and regression analysis was performed to determine the correlation between VHN and DC. In addition, to determine the exposure time needed to harden resin cements under various thickness of porcelain discs, the changes of the intensity of light attenuated by 1mm, 2mm, and 3mm thickness of porcelain discs were measured using the curing radiometer. The results were obtained as follows ; 1. The values of microhardness and the degree of conversion of resin cements without intervening porcelain discs were 31~109VHN and 51~63%, respectively. In the microhardness Z was the highest, followed by R, D, DA. In the degree of conversion, D and DA was significantly greater than Z and R(p<0.05). 2. The microhardness and the degree of conversion of the resin cements decreased with increasing thickness of porcelain discs, and increased with increasing exposure time, D and R showed great variation with inlay thickness and exposure time, whereas, DA showed a little variation. 3. The intensity of light through 1mm, 2mm, and 3mm porcelain inlays decreased by 0.43, 0.25, and 0.14 times compared to direct illumination, and the respective needed exposure times are 53 sec, 70 sec, and 93 sec. In D and R, 40 sec of light irradiation through 2mm porcelain disc and 80 sec of light irradiation through 3mm porcelain disc were not enough to complete curing. 4. The microhardness and the degree of conversion of the resin cements showed a positive correlationship(R=0.791~0.965) in the order of R, D, Z, DA. As the thickness of porcelain discs increased, the decreasing pattern of microhardness was different from that of the degree of conversion, however.

  • PDF

Effect of resin thickness on the microhardness and optical properties of bulk-fill resin composites

  • Kim, Eun-Ha;Jung, Kyoung-Hwa;Son, Sung-Ae;Hur, Bock;Kwon, Yong-Hoon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • 제40권2호
    • /
    • pp.128-135
    • /
    • 2015
  • Objectives: This study evaluated the effects of the resin thickness on the microhardness and optical properties of bulk-fill resin composites. Materials and Methods: Four bulk-fill (Venus Bulk Fill, Heraeus Kulzer; SDR, Dentsply Caulk; Tetric N-Ceram Bulk Fill, Ivoclar vivadent; SonicFill, Kerr) and two regular resin composites (Charisma flow, Heraeus Kulzer; Tetric N-Ceram, Ivoclar vivadent) were used. Sixty acrylic cylindrical molds were prepared for each thickness (2, 3 and 4 mm). The molds were divided into six groups for resin composites. The microhardness was measured on the top and bottom surfaces, and the colors were measured using Commission Internationale d'Eclairage (CIE) $L^*a^*b^*$ system. Color differences according to the thickness and translucency parameters and the correlations between the microhardness and translucency parameter were analyzed. The microhardness and color differences were analyzed by ANOVA and Scheffe's post hoc test, and a student t-test, respectively. The level of significance was set to ${\alpha}=0.05$. Results: The microhardness decreased with increasing resin thickness. The bulk-fill resin composites showed a bottom/top hardness ratio of almost 80% or more in 4 mm thick specimens. The highest translucency parameter was observed in Venus Bulk Fill. All resin composites used in this study except for Venus Bulk Fill showed linear correlations between the microhardness and translucency parameter according to the thickness. Conclusions: Within the limitations of this study, the bulk-fill resin composites used in this study can be placed and cured properly in the 4 mm bulk.

Power density of various light curing units through resin inlays with modified layer thickness

  • Hong, Sung-Ok;Oh, Yong-Hui;Min, Jeong-Bum;Kim, Jin-Woo;Lee, Bin-Na;Hwang, Yun-Chan;Hwang, In-Nam;Oh, Won-Mann;Chang, Hoon-Sang
    • Restorative Dentistry and Endodontics
    • /
    • 제37권3호
    • /
    • pp.130-135
    • /
    • 2012
  • Objectives: The purpose of this study was to enhance curing light penetration through resin inlays by modifying the thicknesses of the dentin, enamel, and translucent layers. Materials and Methods: To investigate the layer dominantly affecting the power density of light curing units, resin wafers of each layer with 0.5 mm thickness were prepared and power density through resin wafers was measured with a dental radiometer (Cure Rite, Kerr). The dentin layer, which had the dominant effect on power density reduction, was decreased in thickness from 0.5 to 0.1 mm while thickness of the enamel layer was kept unchanged at 0.5 mm and thickness of the translucent layer was increased from 0.5 to 0.9 mm and vice versa, in order to maintain the total thickness of 1.5 mm of the resin inlay. Power density of various light curing units through resin inlays was measured. Results: Power density measured through 0.5 mm resin wafers decreased more significantly with the dentin layer than with the enamel and translucent layers (p < 0.05). Power density through 1.5 mm resin inlays increased when the dentin layer thickness was reduced and the enamel or translucent layer thickness was increased. The highest power density was recorded with dentin layer thickness of 0.1 mm and increased translucent layer thickness in all light curing units. Conclusions: To enhance the power density through resin inlays, reducing the dentin layer thickness and increasing the translucent layer thickness would be recommendable when fabricating resin inlays.

브라켓 부착시 레진 베이스의 두께에 따른 전단결합강도와 파절양상에 관한 연구 (SHEAR BOND STRENGTH AND FAILURE PATTERNS ACCORDING TO THE THICKNESS OF RESIN BASE IN BRACKET BONDING)

  • 김재혁;황현식
    • 대한치과교정학회지
    • /
    • 제28권4호
    • /
    • pp.659-668
    • /
    • 1998
  • 본 연구는 브라켓 간접부착술식시 레진 베이스의 두께에 따른 전단결합강도와 파절양상을 비교함으로써 레진 베이스 두께 증가시 전단결합강도의 저하여부를 평가하기 위하여 시행되었다. 소의 하악 절치를 포매하여 만든 레진블럭에 micromanipulator를 사용하여 치면과 브라켓 기저면 사이의 광중합형 접착제가 0.0, 0.5, 1.0, 1.5, 2.0 mm두께가 되도록 각각 브라켓을 부착한 다음 만능물성시험기를 이용하여 치면으로부터 하중 위치까지의 거리를 일정하게 유지하면서 레진 베이스의 두께를 증가시킨 경우와 레진 베이스 두께의 증가와 함께 치면으로부터 하중 위치까지의 거리를 증가시킨 경우로 나누어 전단결합강도를 측정하고 파절양상을 관찰하여 다음과 같은 결과를 얻었다. 1. 치면으로부터 하중 위치까지의 거리를 일정하게 유지한 경우 레진 베이스 두께의 증가와 함께 브라켓 기저부로부터 하중 위치까지의 거리가 감소함에 따라 전단결합강도가 유의하게 증가하였다. 2. 레진 베이스 두께의 증가와 함께 치면으로부터 하중 위치까지의 거리를 증가시킨 경우 전단결합강도가 감소하는 것으로 나타났으나 그 유의차는 미미하였다. 3. 접착제 잔류지수를 이용하여 레진 베이스의 두께에 따른 파절양상을 비교 관찰한 결과 유의한 차이를 보이지 않았다. 이상의 실험결과를 볼 때 브라켓 부착시 레진 베이스의 두께에 따른 전단결합강도는 브라켓 기저부로부터 하중 위치까지의 거리가 증가함에 따라 감소하는 반면 레진 베이스 두께의 영향은 크게 받지 않는 것으로 나타났다.

  • PDF

도재 라미네이트의 두께의 따른 레진 시멘트의 표면경도에 관한 연구 (THE SURFACE HARDNESS OF RESIN CEMENT BY THICKNESS OF PORCELAIN LAMINATE)

  • 강석구;동진근;진태호
    • 대한치과보철학회지
    • /
    • 제31권4호
    • /
    • pp.506-514
    • /
    • 1993
  • The purpose of this study was to evaluate the effect of porcelain laminate thickness on polymerization of resin cement. G-Cera resin bonding system(G-C int., Japan) was used in this study and Heliolux II (Vivadent, Austria) was used for polymerization of resin cement. The thickness of porcelain laminates used in this study were 0.5mm, 1.0mm and 1.5mm and the degree of polymerization of resin cement was measured by microhardness theater(Matsuzawa, Model MXT-70, Japan). The obtained results were as follows : 1. The surface hardness of resin cements increaing the thickness of poreclain laminate was decreased. 2. The surface hardness of resin cements increasing the curing time was decreased.

  • PDF

Compton 산란선을 이용한 아연계 전기도금강판 표면의 Slicone Resin Film 두께측정 (The Thickness Determination of Silicone Resin on Zinc Electroplated Steels using Compton Scattering)

  • 소재춘;이도형
    • 대한화학회지
    • /
    • 제35권5호
    • /
    • pp.539-544
    • /
    • 1991
  • X-ray Compton 산란선의 강도를 측정하여 내지문처리재(Anti-fingerprint Steel)의 표면에 Coating 되어 있는 Silicone resin film의 두께를 신속하게 측정할 수 있는 새로운 분석방법을 연구하였다. Silicone resin과 같은 유기수지들은 C, H, O, Si 등과 같은 경원소들로 구성되어 있어 compton 산란선의 강도가 높게 나타나는데 이러한 성질을 이용, X-ray tube로부터 발생된 RhK$_{\alpha}$ 선을 시료표면에 조사한 후 발생된 RhK$_{\alpha}$ compton 산란선의 강도를 측정하여 silicone resin film의 두께를 구하였다. 검량곡선 작성결과 0.2 ~ 5.0 ${mu}$m 범위에서 직선성을 나타냈으며 두께측정에 대한 정확도는 0.22 ${mu}$m 이었다.

  • PDF

자가 중합 임시수복용 레진의 경화 시 외부환경 변화에 따른 치아의 온도변화 (IN VITRO STUDY OF TOOTH TEMPERATURE CHANGE DURING POLYMERIZATION REACT10N OF THE COLD-CURED RESINS USED IN PROVISIONAL CROWN AND FIXED PARTIAL DENTURES)

  • 오우식;백진;김형섭;우이형
    • 대한치과보철학회지
    • /
    • 제44권5호
    • /
    • pp.503-513
    • /
    • 2006
  • Statement of the problem: The cold-cured resins used in fabrication of the provisional crown and fixed partial dentures could cause pulpal damage by heat generated during exothermic polymerization reactions. Purpose: In this in vitro study investigates the how external conditions such as material of the matrix, thickness of the matrix and thickness of dentin affect the temperature of the tooth during polymerization reaction of the cold-cured resins. Material and methods : To measure the temperature of the resin, metal die was maintained to the temperature of $37^{\circ}C$ with water bath to simulate the temperature of thetooth and thermocouple was placed in the center of the metal die. Acrylic pipe was cut in height of 1, 2, 3, 6, 10 mm and placed on the metal die and mixed resin was pored in the acrylic pipe As the resin polymerized temperature was recorded with the thermometer. Temperature of the resin using matrix was recorded by using the individual tray relieved in different thickness 2, 5, 7, 10 mm. The material of the matrix was irreversible hydrocolloid impression material, vinyl polysilloxane impression material and vacuum-formed template Temperature rise of the resin using different thickness of tooth section was record ed by placing tooth section on the metal die and placing resin over the tooth section. Results : Conclusion : 1. Temperature rise increased as the thickness of the resin increased but there was no significant differences over 3 mm thickness of the resin. 2. The lowest temperature rise was showed in irreversible hydrocolloid impression material and vinyl polysilloxane impression material vacuum-formed template as in orders. 3, Temperature rise of the resin decreased regardless of the thickness of the matrix when vinyl polysilloxane impression material was used as the matrix. 4 When irreversible hydrocolloid impression material was used as matrix, the temperature rise of the resin decreased as the thickness of the matrix increased and there was no temperature rise when thickness of the matrix reached 10 mm, 5. The temperature rise of the resin did not decreased when Polypropylene vacuum-formed template was used as the matrix. 6, The temperature of the resin increased as the thickness of the dentin decreased.

RFI 공정시 적정 수지필름 두께에 관한 연구 (A Study on the Proper Resin Film Thickness in RFI Process)

  • 윤성현;이정완;김정수;김위대;엄문광
    • Composites Research
    • /
    • 제31권1호
    • /
    • pp.23-29
    • /
    • 2018
  • RFI 공정은 수지 점도에 제한이 없어 매우 두꺼운 구조물에도 적용이 가능하다. 수지필름 두께를 설정할 때 수지필름의 두께가 얇은 경우 미함침 구간이 발생하여 기계적 물성이 저하되고, 수지필름 두께가 두꺼운 경우 필요이상의 여분 수지가 발생하게 된다. 따라서 본 연구에서는 RFI 공정에서 수지필름 두께 설정을 위한 방법을 제시하였다. 적정 수지필름 두께를 설정하는 방법으로 섬유압착거동 시험을 제시하였고, 제시된 방법의 검증을 위해 숏빔전단강도시험, 압축시험, 기공률 측정을 통해 복합재 물성을 평가하였다. 복합재 물성 평가 결과, 섬유압착거동시험 결과를 바탕으로 적정 수준의 수지필름 두께를 찾을 수 있었다.

치과용 레진 시멘트의 피막도에 관한 실험적 연구 (AN EXPERIMENTAL STUDY ON THE FILM THICKNESS OF RESIN LUTING CEMENTS)

  • 조국현;송창용;송광엽;박찬운
    • 대한치과보철학회지
    • /
    • 제32권2호
    • /
    • pp.212-224
    • /
    • 1994
  • The purpose of this study was to evaluate and compare film thickness of five kinds of resin luting cements [Comspan, Panavia Ex, Maryland bridge adhesive, All-bond C & B cementation kit, and Super-bond C & B]. Zinc-phosphate cement and glass-ionomer cement were used as the control group. In order to measure the film thickness the methods used were in broad compliance with ADA Specification No. 8, a tapered-die system that simulates clinical conditions more closely, and the connected tapered-die system that simulates bridge conditions. The inorganic filler size of resin cements was also examined with scanning electron micrographs. The results were obtained as follows ; 1. The film thickness of resin cements was increased in the order of Comspan, Panavia Ex, Super-bond C & B, Maryland bridge adhesive, and All-bond C & B cementation kit. Maryland bridge adhesive and All-bond C & B cementation kit showed significantly higher film thickness than the control group(p<0.01). 2. For all resin cements, there was a significant difference of film thickness between the ADA method and the tapered-die system. Generally, the tapered-die system demonstrated lower film thickness than the ADA method(p<0.01). 3. There was no significant difference in film thickness between the tapered-die system and the tapered-die bridge system in all resin cements(p<0.01). 4. The scanning electron microscope showed that the cement with larger filler had a tendency to be higher in film thickness.

  • PDF

Influence of cement thickness on resin-zirconia microtensile bond strength

  • Lee, Tae-Hoon;Ahn, Jin-Soo;Shim, June-Sung;Han, Chong-Hyun;Kim, Sun-Jai
    • The Journal of Advanced Prosthodontics
    • /
    • 제3권3호
    • /
    • pp.119-125
    • /
    • 2011
  • PURPOSE. The aim of this study was to evaluate the influence of resin cement thickness on the microtensile bond strength between zirconium-oxide ceramic and resin cement. MATERIALS AND METHODS. Thirty-two freshly extracted molars were transversely sectioned at the deep dentin level and bonded to air-abraded zirconium oxide ceramic disks. The specimens were divided into 8 groups based on the experimental conditions (cement type: Rely X UniCem or Panavia F 2.0, cement thickness: 40 or 160 ${\mu}m$, storage: thermocycled or not). They were cut into microbeams and stored in $37^{\circ}C$ distilled water for 24 h. Microbeams of non-thermocycled specimens were submitted to a microtensile test, whereas those of thermocycled groups were thermally cycled for 18,000 times immediately before the microtensile test. Three-way ANOVA and Sheffe's post hoc tests were used for statistical analysis (${\alpha}$=95%). RESULTS. All failures occurred at the resin-zirconia interface. Thermocycled groups showed lower microtensile bond strength than non-thermocycled groups (P<.001). Differences in cement thickness did not influence the resin-zirconia microtensile bond strength given the same resin cement or storage conditions (P>.05). The number of adhesive failures increased after thermocycling in all experimental conditions. No cohesive failure was observed in any experimental group. CONCLUSION. When resin cements of adhesive monomers are applied over air-abraded zirconia restorations, the degree of fit does not influence the resin-zirconia microtensile bond strength.