• Title/Summary/Keyword: Resin concrete

Search Result 304, Processing Time 0.023 seconds

The Evaluation of Durability and Bond of Resin Concrete (레진 콘크리트의 부착성 및 내구성 평가)

  • Yoo Sung Won;Suh Jeong In;Jeon Sung Hwan;Hwang Sun Bok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.715-718
    • /
    • 2004
  • The evaluation of durability of resin concrete was examined through various tests, i.e., compressive strength, absorption, abrasion, chemical attack resistance and bond between general and resin concrete. 2 types of concrete were used such as 40 MPa of general concrete and 90 MPa of resin concrete. The characteristics of resin concrete was more improved than that of general concrete, and especially, resin concrete was most effective on compressive strength, the resistance to $H_2SO_4$ solution attack and absorption. However, abrasion. is almost same between general concrete and resin concrete.

  • PDF

Effects of Resin Quantity on the Strength Properties of Polyester Resin Concrete (폴리에스터 레진콘크리트에서 수지 사용량에 따른 강도특성)

  • 황광률;소형석;소승영;박홍신;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.235-239
    • /
    • 1994
  • Polymer mortars are mainly used as protective coatings in concrete, reinforced concrete, and more rarely, steel, while polymer concretes represent a new type of structural material capable of withstanding highly corrosive environments. The mechanical properties, chemical stability, and some other useful properties are the reasons research, design, and production organizations. However polymer mortars and polymer concretes have been introduced only recently, and many of their properties are still imperfectly known. And, the main technique in producing polymer concrete is to minimize void volume in the aggregate mass so as to reduce the quantity of the relatively impressive polymer necessary for binding the aggregate. In this study, compressive strength and flexural strength of unsaturated polyester resin concrete are related to quantity of resin and solid volume of aggregate. It was founded that the more solid volume of aggregate increase, the less using quantity of resin decrease with out reducing mechnical properties. When solid volume ratio of aggregate is 70.6%, using quantity of resin is minimized to 10wt.%.

  • PDF

Characteristics of the Hardening Shrinkage and Creed of Eporxy Resin Concerte (에폭시 수지 콘크리트의 경화수축 및 크리이프 특성)

  • 허남철;연규석
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.1
    • /
    • pp.109-119
    • /
    • 1990
  • This study was accomplished to investigate the characteristics of hardening shrinkage and initial creep of epoxy resin concrete depending on the presence of filler. According to the test results, the hardening shrinkage was increased with increment of sLOrage temperature, and the ef¬feel of tempemture on the hardening shrinkage of epoxy resin concrete with 6% filler was more Significant than that of epoxy resin concrete without filler. Also, the initial creep strain was increased with loading times, stress--strength ratio and elastic strain, and the values for opoxy resin concrete with 6 % filler are higher than that for eposy resin concrete without filler.

A Study on the Thermal Insulation Property of Concrete Composites using Light-weight Aggregate (경량골재를 사용한 콘크리트 복합체의 단열성능에 관한 연구)

  • So, Seung-Yeong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.3
    • /
    • pp.93-100
    • /
    • 2004
  • In recent years, it has widely been studied on the light-weight composites for the purpose of the large space and thermal insulation of building structures. The purpose of this study is to evaluate the properties of light-weight composites made by binders as cement, resin and polymer cement slurry. The concrete composites are prepared with various conditions such as polymer-cement ratio, void-filling ratio, type of resin, filler content and light-weight aggregate content, tested for thermal conductivity. From the test results, the thermal conductivity of concrete composites with the binder of cement tends to decrease with increasing polymer-cement ratio, and to increase with increasing void-filling ratio. The thermal conductivity of concrete composites with the binder of resin are markedly affected by the light-weight aggregate content, type of resin and filler content. The composites made by polymer-modified concrete and polymer cement slurry have a good thermal insulation property. From the this study, we can recommend the proper mix proportions for thermal insulation Panel or concrete. Expecially. the thermal conductivity of concrete composites made by polyurethane resin is almost the same as that of the conventional expanded polystyrene resin.

Experimental and numerical study of the behavior of fiber reinforced concrete beams with nano-graphene oxide and strengthening CFRP sheets

  • Mohammad Reza Halvaeyfar;Ehsanollah Zeighami;S. Mohammad Mirhosseini;Ali Hassani Joshaghani
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.375-389
    • /
    • 2023
  • In many fiber concrete beams with Carbon Fiber Reinforced Polymer (CFRP), debonding occurs between the carbon sheets and the concrete due to the low strength of the bonding resin. A total of 42 fiber concrete beams with a cross-section of 10×10 cm with a span length of 50 cm are fabricated and retrofitted with CFRP and subjected to a 4-point bending test. Graphene Oxide (GO) at 1, 2, and 3 wt% of the resin is used to improve the mechanical properties of the bonding resins, and the effect of length, width, and the number of layers of CFRP and resin material are investigated. The crack pattern, failure mode, and stress-strain curve are analyzed and compared in each case. The results showed that adding GO to polyamine resin could improve the bonding between the resin and the fiber concrete beam. Furthermore, the optimum amount of nanomaterials is equal to 2% by the weight of the resin. Using 2% nanomaterials showed that by increasing the length, width, and number of layers, the bearing and stiffness of fiber concrete beams increased significantly.

Mechanical Characteristics of Polymer Concrete made with Recycled Plastic and Concrete Aggregates (폐플라스틱과 재생골재를 이용한 폴리머콘크리트의 역학적 특성)

  • Jo Byung-Wan;Park Seung-Kook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.324-327
    • /
    • 2004
  • In this paper, fundamental properties of Polymer Concrete made from unsaturated polyester resin based on recycled PET and recycled aggregate(RPC) were investigated. Resins based on recycled PET and recycled aggregate offer the possibility of low source cost for forming useful products, and would also help alleviate an environmental problem and save energy. The results of test for resin contents and recycled aggregate ratio are showed that the strength of RPC increases with resin contents relatively, however beyond a certain resin content the strength does not change appreciably, and the relationship between the compressive strength and aggregate contents at resin $9\%$ has a close correlation linearly whereas there is no correlation between the compressive strength and the flexural strength of RPC with recycled concrete aggregate.

  • PDF

The Evaluation of Performance of Drain Pipes manufactured with Resin Concrete (레진 콘크리트로 제작한 하수관의 성능 평가)

  • 서정인;유성원;전성환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.57-62
    • /
    • 2002
  • Resin concrete has better properties than regular cement concrete in making structures such as manholes, pipes, etc. This study is to evaluate the performance of drain pipes made with resin concrete for the development its application. The test results have been checked by JSWAS K-11, because Korea does not have the code for its check-up. They satisfied all the requirements.

  • PDF

A foundational study of Effect Elements on Adhesive strength of Epoxy Reisn for Concrete Maintenance. (콘크리트 유지관리용 애폭시수지의 부착성능에 미치는 요인에 관한 기초적 연구)

  • 고장열;곽규성;정환목;이동열;오상근;박국배
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.627-632
    • /
    • 1998
  • This study deals with the effect on adhesive strength properties of waterproofing and reinforcing layer and mortar or concrete substrate applicated by epoxy resin anticorrosive and bonding materials. Properties of adhesive strength change condition of concrete substrate, temperature, moisture, curing and cleaning and so on. The purpose of this study is that it makes the estimation value of bond strength of concrete wall and epoxy resin layer when coated epoxy resin as anticorrosive materials for durability performance estimation depend on concrete watertightness, and when penetrated epoxy resin for the reinforcement of concrete used the carbon fiber sheet.

  • PDF

Prediction of Compressive Strength of Unsaturated Polyester Resin Based Polymer Concrete Using Maturity Method (성숙도 방법을 이용한 불포화 폴리에스터 수지 폴리머 콘크리트의 압축강도 예측)

  • Choi, Ki-Bong;Jin, Nan Ji;Lee, Youn-Su;Yeon, Kyu-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.19-27
    • /
    • 2017
  • This study investigated to predict the compressive strength of unsaturated polyester resin based polymer concrete using the maturity method. The test results show that the development of the compressive strength increased exponentially until an age of 24 hours. After 24 hours, the development of the compressive strength just increased gradually. This test result shows that the strength of unsaturated polyester resin based polymer concrete was developed mainly at the early age. Estimated datum temperature of unsaturated polyester resin based polymer concrete was $-20.67^{\circ}C$ which was much lower than of datum temperature ($-10^{\circ}C$) of Portland cement concrete. Also, this study result shows that the existing maturity index associated with Portland cement concrete was not applicable for polymer concrete because curing time of Portland cement concrete is different clearly with curing time of polymer concrete. The cause of different curing time was that there were different curing mechanisms between Portland cement concrete and polymer concrete. In order to best apply the experimental data to a model, CurveExpert Professional, the commercial software, was used to determine the predictive model regarding the compressive strength of unsaturated polyester resin based polymer concrete. As a result, Gompertz Relation or Weibull Model was an appropriate model as a predictive model. The proposed model can be used to predict the compressive strength, especially, it is more useful when the maturity is in the range between $40^{\circ}C{\cdot}h^{0.4}$ and $900^{\circ}C{\cdot}h^{0.4}$.

Effects of Fillers on Mixing and Mechanical Properties of Polymer Concrete (충진재가 폴리머 콘크리트의 배합과 역학적 성질에 미치는 영향)

  • 연규석;김광우;김기성;김관호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.2
    • /
    • pp.81-91
    • /
    • 1993
  • This study was performed to evalute effects of fillers on the mixing characteristics and mechanical properties of polymer concrete. Two types of unsaturated polyester polymer and two types of epoxy resin were used as binder material, and the portland cement, a fly ash and heavy calcium carbonate were used as filler. Following conclusions were drawn from the research results. 1. Working life of polymer concrete was not affected by filler types, but affected significantly by polymer types and quantities of hardener and catalysts. 2. Without concerning polymer types, use of heavy calcuim carbonate as filler was the best in improving workability.3. The highest strength was achieved by heavy calcium carbonate in using unsaturated polyester resin and by fly ash in using epoxy resin type.4. Elastic modulus was in the range of 2.05X 10-5~2.6X 10-5gf/cm$^2$, which was approximatly 60% of that of cement concrete. Heavy calcium carbonate with unsaturated polyester resin and fly ash with epoxy resin showed relatively higher elastic modulus.

  • PDF